A Global Specification Model for
Data-Aware Coordination

(towards smarter smart contracts)

Anténio Ravara (with Elvis K. Selabi, Maurizio Murgia, and Emilio Tuosto)
NOVA Laboratory of Computer Science and Informatics, Portugal

September 19, 2025

Context

The blockchain explosion

from cryptocurrencies to omni-present distributed apps

. Applications Of Bloc

2B O a = i

. e
Digital le Bitcoin

Internet of Things

%w@ 3 Real estate

Tube) 2]

Online music Banking

blockchain as a global computer

Services available via Contracts

e Scripts ready to run on real-time on a blockchain
e Eliminate central authorities — fully distributed peer-to-peer

e All parties accountable

Smart Contracts everywhere

OP 12 SMART CONTRACT USE CASES

DIGITAL IDENTITY FINANCIAL SECURITY

Provides individual identity in digital assets, removes 73" Can be used for liability management. automatic
counterfeits and also makes KYC frictionless payments, stock splits, d

TRADE FINANCE FINANCIAL SERVICE

Can be used for cross border payments, Offer error-free services, automating
international trade many aspects

FINANCIAL DATA RECORDING GOVERNMENT

Improves data recording, accuracy, saves Help automate operations, improves
reporting and auditing costs transparency and efficiency

SUPPLY CHAIN MANAGEMENT a= INSURANCE

Automates supply chain with visibility Automates claims and
and transparency, leads to fewer frauds resolves disputes with proof

CLINICAL TRIAL ESCROW

Offers cross-institutional visibility, automate. Automates escrow amount,
data share and improves privacy authenticates and improves trust

TRADING ACTIVITY MORTGAGE SYSTEM

Trades can be automated without the Automates mortgage and
need for intermediaries fastens the process

Problem

Exploitable vulnerabilities

Code is law, so bugs are features

@ Nitesh Dnarjani
Smart Contract Attacks: Hundred Million Dollar
Heists, Rug-pullers, Front Runners, NFT Snipers,

and Uninformed Auditors o -
H Business
in the crypto useful study |
wlighton e b . Badger DAO Protocol Suffers $120M Exploit
improved in terms of rust. This write-up covers some recent security incidents, ! The hacker or hackers may have targeted the platform's user interface.
heanalyss o oot causes, and foran ofwhat's [

t0 come i terms of the players involved and their future incentives,

$31Million USD Stolen Because Someone Forgot an if Statement
On November 30, 2021, $31 Million USD was stolen from the MonoX Protocol

smart contracts deployed on the Ethereum and Polygon network.

Sep 4, 2021, 06:02am EDT

They’re Not Smart And They’re
Not Contracts

- David G.W. Birch Contributor ©
® Fintech
) Author, advisor and global commentator on digital financial services.

But they are the building blocks of a new financial
infrastructure.

Goal

The case for generating correct-by-construction code

The Verified Software Initiative

. . T “We envision a world in which computer
Uil vl T s Sl programs are always the most reliable
humble programmer” component of any system or device that

o contains them” [Hoare & Misra)
“If debugging is the process of

removing bugs from the code, "We propose an ambitious and

programming must be the process long-term research program toward the

of putting them there!” construction of error-free software 6

"
qvstems

https://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf
https://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf

Our (modest) goal: from models to code

setFouriiheels(boolean)

setspeed(int) G
setEcoDrive(boolean)

setSpeed(int)

turnon()

SPORT_ON

COMF_ON

turnoff()

switchMode()

SwitchMode()

typestate SUV {
OFF = {
boolean turnOn () :
<true :COMF_ON, false : OFF>,

drop: end
}

COMF.ON = {
void turnOff(): OFF,
void setSpeed (int): COMEON,
Mode switchMode () :
<SPORT : SPORT_ON,COMFORT: COMF_ON> ,
void setEcoDrive (boolean): COMFON

SPORT_ON = {
void turnOff (): OFF,
void setSpeed(int): SPORT_ON,
Mode switchMode () :
<SPORT : SPORT_ON, COMFORT: COMF_ON>,
void setFourWheels (boolean): SPORT_ON

¥

Contribute with modelling tools and suitable programming

abstractions

e State-Machines via Lightweight (graphical) annotations

e Sound code generation from scribbled specifications

e Verification of compliance at compile-time

when the developer changes the code directly

How difficult is the situation now?

December 2, 2021:

Really Stupid 'Smart Contract' Bug Let Hackers Steal $31 Million In Digital Coin

User could send tokens to themselves and increase their balance!

// swap from tokenIn to tokenOut with fixed tokenIn amount.

functlon suapIn (address tokenIn address tokenQut, address from, address to,
uint256 amountIn) internal 1ockToken(tokenIn) returns(uint256 amountOut) {

Someone forgot an if statement: tokenin I= tokenOut

How difficult is the situation now?

December 2, 2021:

Really Stupid 'Smart Contract' Bug Let Hackers Steal $31 Million In Digital Coin

User could send tokens to themselves and increase their balance!

f 0 ed to
functlon suapIn (address tokenIn address tokenOut, address from, address to,
uint256 amountIn) internal 1ockToken(tokenIn) returns(uint256 amountOut) {

Someone forgot an if statement: tokenin I= tokenOut

“Someone forgot an if statement” — really?!

Isn't it a problem of lack of abstractions?

How difficult is the situation now?

December 2, 2021:

Really Stupid 'Smart Contract' Bug Let Hackers Steal $31 Million In Digital Coin

User could send tokens to themselves and increase their balance!

f 0 ed to
functlon suapIn (address tokenIn address tokenOut, address from, address to,
uint256 amountIn) internal 1ockToken(tokenIn) returns(uint256 amountOut) {

Someone forgot an if statement: tokenin I= tokenOut

“Someone forgot an if statement” — really?!

Isn't it a problem of lack of abstractions?

Sender and receiver should be different roles,
with different permissions

What's out there that can help?

On Smart Contracts and State Machines

From the Solidity documentation
State Machine

Contracts often act as a state machine, which means that they have certain stages in which they
behave differently or in which different functions can be called. A function call often ends a stage and
transitions the contract into the next stage (especially if the contract models interaction). It is also
common that some stages are automatically reached at a certain point in time.

On Smart Contracts and State Machines

From the Solidity documentation

State Machine

Contracts often act as a state machine, which means that they have certain stages in which they
behave differently or in which different functions can be called. A function call often ends a stage and
transitions the contract into the next stage (especially if the contract models interaction). It is also
common that some stages are automatically reached at a certain point in time.

So, a smart contract looks like

e a choreographic model

global specification determining enabled actions along the
protocol

e a typestate (declares non-uniform component behaviour)
“reflects how the legal operations ... can change at runtime as
their internal state changes.”

From the Microsoft Azure Blockchain Workbench

No attempt to be formal...
SINFLE MARKET?LALE ST&T&‘ ']_RhNﬂTlDNS

Aﬁ’ucm!ow EOLES

Tr Maxe DFrer

. ONNI—,‘R (O) AR B
Trem
+ Bove
e (B) AvAiLABLE
e 'Earccr
AIR. D
LE'.G\EN‘D

T TKRNS[‘H'DN Function
+ AR Auower Roe
« PR Ruewsen Instance Roce

A Hawes Patn

https://github.com/Azure-Samples/blockchain/blob/master/blockchain-workbench

10

https://github.com/Azure-Samples/blockchain/blob/master/blockchain-workbench

From the Microsoft Azure Blockchain Workbench

Swirte Marsernace St Trawsmons

function AcceptOffer() public {
TrMascDrsen - p if (msg.sender != InstanceOwner) { revert(); }

/\YFL\(AUDN ’KOLLS

- Owner (0)
. Bowes (:) Avf:::g \ State = StateType.Accepted;
Lecers

Code snippet is bugged: AcceptOffer does not check the state

11

Our proposal: Data-Aware Finite
State Machines

Ingredients for a model to cope with the scenario

a global specification to
e coordinate distributed components
e declare how actions are enabled along the computation

e not force component cooperation

12

Ingredients for a model to cope with the scenario

a global specification to
e coordinate distributed components
e declare how actions are enabled along the computation

e not force component cooperation

A Data-Aware FSM (DAFSM) ¢

on state variables uy,. .., u, is deployed by participant p:
new p: Restart(c,--- , Tix;,---) {--uj:=¢;---}

:

12

Ingredients for a model to cope with the scenario

a global specification to
e coordinate distributed components
e declare how actions are enabled along the computation

e not force component cooperation

A Data-Aware FSM (DAFSM) ¢

on state variables uy,. .., u, is deployed by participant p:
new p: Restart(c,--- , Tix;,---) {--uj:=¢;---}

:

and has transitions like

where « is a guard (ie a boolean expression) and

{v}wof(---,Tix,---) B m = newp:R | anyp:R | p
O O is a qualified participant calling f with parameters x;

state variables are reassigned according to B if the
invocation is successful

12

Back to the Azure Workbench example

v o: O start(c,Int :
price) {c.price := price}

[neW
(e lrew

o> c.acceptOffer()
®
ext

lyew = {offer > 0} v b: B> c.makeOffer(Int : offer) {c.offer := offer}
Loy = {offer > 0} any b: B> c.makeOffer(Int : offer) {c.offer := offer}

£,

13

Can we tackle all the Azure Workbench examples?

ICI BI PP RR MPR

Hello Blockchain

|S|'mple Marketplace

Bazaar

Ping Pong

Defective Component Counter
Frequent Flyer Rewards Calculator
Room Thermostat

Asset Transfer

Basic Provenance

Refrigerated Transport

Digital Locker

PODDDODDx x|OD
ANENENENVOIENENENEN ENIEN
NN NN N ool o])
SSSSOO00O0 0SS0
SSO00 00O 00D

ICI Inter-contracts interactions
Bl and PP New participants By-Invocation or Parameter Passing

RR and MPR Role Revocation and Multiple Participant Roles 14

Not all DAFSMs make sense

Names’ freeness

new o: O 1> start(c) pr-f()
>0 2 ©)]

15

Not all DAFSMs make sense

Names’ freeness
new o: O 1> start(c) pr-f()

Y

O
y

©

Role emptyness
new o: O b start(c) any p: R f()

Y

O
1

©

15

Not all DAFSMs make sense

Names’ freeness
new o: O 1> start(c) pr-f()

Y

O
y

©

Role emptyness
new o: O b start(c) any p: R f()

Y

O

>Q

No progress
new o: O b start(c) {u := 0} {u > 0} new p: Ref()

>
TS

-

15

TRAC: model and ensure well-formed DAFSMs

Paper and Artefact at Coordination’'24

- -£=T
1
o ,» GraphGen
I ' Z3Model - - » Z3Runner
v x A
| (CallerCheck)
- 1lerCheck
= Callerchec :
: 1
1

- - (FBuilder

AConsistency

1
B T

'Analizer }- - ->m

https://github.com/loctet/TRAC

16

https://github.com/loctet/TRAC

Concluding

The role of a choreographic model

Smart Contracts: code is law, bugs are features
How to make sure to deploy correct ones and defend them from
exploits?

e Automatically get correct-by-construction ones

e Protect from malicious clients blocking insidious requests
(using monitors, for instance)

17

The role of a choreographic model

Smart Contracts: code is law, bugs are features
How to make sure to deploy correct ones and defend them from
exploits?

e Automatically get correct-by-construction ones

e Protect from malicious clients blocking insidious requests
(using monitors, for instance)
Our contribution

e A model for global choreographies: Data-Aware Finite State
Machines

e A tool to define and check their well-formedness: TRAC

e A prototype to generate Solidity code

17

Thanks!

For now...

	Context
	Problem
	Goal
	What's out there that can help?
	Our proposal: Data-Aware Finite State Machines
	Concluding

