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Talk overview

1. The discovery of incompleteness

2. The road to completeness
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Part I

The discovery of incompleteness
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In the beginning...

▶ Propositional separation logic

▶ Semantics: separation algebras (monoids)

▶ Proof system: bunched logics

▶ Soundness and completeness ✓

☞ The logic of bunched implications,
O’Hearn, Pym (1999)

☞ The Semantics of BI and Resource Tableaux,
Galmiche, Méry, Pym (2005)

☞ Expressivity properties of Boolean BI through relational models,
Galmiche and Larchey-Wendling (2006)
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Separation logic

▶ First-order separation logic

p, q ::= ... | p ∗ q | p −∗ q | (x ↪→ y)

▶ Heaps are partial functions

▶ Scalability argument of separation logic
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What about ‘points to’?

John C. Reynolds:
“Finally, we give axiom schemata for the predicate 7→.
Regrettably, these are far from complete.”

(x 7→ y) ∧ (z 7→ w) ↔ (x 7→ y) ∧ x = z ∧ y = w

(x ↪→ y) ∗ (z ↪→ w) → x ̸= z

emp ↔ ∀x . ¬(x ↪→ −)

▶ However, ‘points to’ interacts with separating connectives

☞ Separation logic: A logic for shared mutable data structures,
Reynolds (2002)
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The missing axioms

▶ Define emp as (∀x , y . ¬(x ↪→ y))

▶ Define (x 7→ y) as (x ↪→ y) ∧ (∀z .(z ↪→ −) → z = x)

A1 ∀x , y . ((x ↪→ y) ∗ true) → (x ↪→ y)
A2 ∀x , y . (x ↪→ y) → ¬((x ̸↪→ y) ∗ (x ̸↪→ y))
A3 ∀x , y , z . ¬((x ↪→ y) ∗ (x ↪→ z))
A4 ∀x , y , z . ((x ↪→ y) ∧ (x ↪→ z)) → y = z

▶ Every separation algebra that satisfies these axioms is
isomorphic (categorical axiomatization)

▶ These axioms hold in the standard model
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Tool support

(x ↪→ −) ∧ ((x = y ∧ z = w) ∨ (x ̸= y ∧ (y ↪→ z)))

≡

(x ↪→ −) ∗ ((x ↪→ w) −∗ (y ↪→ z))

CVC4/CVC5: bug producing incorrect counter-example

Iris: not provable without adding extra axioms
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Part II

The road to completeness
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General separation logic

▶ Desiderata: finitary proof system, soundness, completeness

▶ Gödel’s incompleteness of arithmetic

▶ Generalize to arbitrary models: weak, full, general

▶ All finite heaps: lacks compactness, so not complete

▶ All (infinite) heaps: expressivity of finiteness (not compact)

▶ Henkin’s general models with first-order purely definable heaps

☞ Model theory of second order logic
Väänänen, Jouko (2023)
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First-order hybrid separation logic

▶ Generalization of satisfaction operator @ of hybrid logic

▶ Logical counterpart of ‘virtual memory’

p@q(x , y)

where variables x , y in q are bound by @, and q is functional.

Example (Proof rules)

▶ ((t ↪→ t ′)@q) ↔ q[x , y := t, t ′]

▶
((p ∗ q)@r) (r ≡ R1 ⊎ R2) → (p@R1) → (q@R2) → r ′

r ′

▶ Semantics: heap extensionality and comprehension

▶ Prototype in logical framework Coq/Rocq
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Full separation logic

▶ Expressivity of (Dedekind-)finite universe:

■(tot(↪→) ∧ inj(↪→) → surj(↪→))

▶ Open problem: can you express that heap has finite domain?

▶ First-order logic ⊂ full separation logic
?
= second-order logic

▶ Breaking the ‘local’ spell of separation logic
i.e. having more than one heap in scope
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