WG3 Deliverables

September 17-19, 2025

WG3 Deliverables

- D11. Collection of verification challenges with summary of working recipes for verifying them.
- D12. Technique for syntax-semantics interface for program verification with or without type systems.

D12 - Syntax-semantics interface for program verification — Type theory

- Roussanka Loukanova: Type-Theory of Algorithms with Chain-Free Memory. DCAI (1) 2024: 65-76
- Roussanka Loukanova: Semantics of Propositional Attitudes in Type-Theory of Algorithms. LENLS 2023: 260-284.
- Roussanka Loukanova: Logic Operators and Quantifiers in Type-Theory of Algorithms. LENLS 2022: 173-198

D12 - Syntax-semantics interface for program verification — Rewriting logic

- Maude is a high-performance language and system supporting both equational and rewriting logic computation for a wide range of applications.
- Maude is also a logical framework where other programming languages can be defined (both their syntax and semantics).
- Rewriting logic is reflexive, which is implemented in Maude via a meta-level.

D12 - Syntax-semantics interface for program verification — Rewriting logic

- In this way, we can
 - Define the syntax of a language in Maude (equational part).
 - Define the semantics in Maude (rewriting logic).
 - Execute and analyze programs written in the language defined previously (meta-level).
- Friday talk in MongoDB.

D11 - Verification challenges

- Challenges available in GitHub
 - https://github.com/EuroProofNet/ProgramVerification/ wiki/List-of-challenges
- We are sure more challenges exist.
- Let's check the ones already proposed.
- One of the relates to a particular technology and the other one to a verification technique.

D11 - Verification challenges - TLS

- Challenges related to the Transport Layer Security protocol.
- Thanks to Muhammad Usama Sardar for the contribution as Team lead.
- Two issues described:
 - Issue 1: Incomplete specs (e.g., see here)
 - Issue 2: Vague and outdated specs (e.g., see here)
- As related technology, we emphasize symbolic security analysis.

D11 - Verification challenges - Proof scores

- Proof scores are outlines of the formal verification of system properties.
- Proofs are written in the same language as the verification.
- They are a very flexible approach, although they have some formal limitations.
- However, (I consider) they share several issues with "standard" theorem provers.

D11 - Verification challenges - Proof scores

Issues

- Theorem proving is difficult (only for academia).
- Theorem proving requires experts (only for academia).
- There exists a gap between specifications and implementations.
- Not even theorem proving provides complete assurance (gap!).
- Theorem proving consumes (too much) resources.
- Theorem proving is only useful for critical applications.
- Theorem proving does not work with real problems.

D11 - Verification challenges - Proof scores

- Solutions(?)
 - Automatizing lemma discovery and proofs.
 - IDE and Graphical User Interface support.
 - Application to New Protocols (previous challenge!).
 - Artificial intelligence support.

D11 - Verification challenges - What we need

- Name of the challenge (used also for the webpage name).
- Short description of the challenge.
- Research team/s involved (or communities).
- Main issues / open problems related to the challenge.
- Techniques and technologies related to the challenge.
- Example(s).
- Other relevant information (external links, references, etc.).
- Status (identified/active/finished/discontinued).

Edit GitHub or send us an email (ariesco@ucm.es and villanue@dsic.upv.es).

Let's discuss and complete the challenges!

