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The Ingredients

Functional programming
+

Laziness
+

Non-determinism

Programs

heads(x :y :xs)→ (x , y)
repeat(x)→ x : repeat(x)

coin→ 0 coin→ 1

Expressions & Values

heads(0 : 1 : repeat(2)) _ (0, 1)
coin _ 0
coin _ 1

Functional Logic Programming (FLP) - Toy, Curry

(Constructor-based) Term Rewriting Systems (TRS) - Maude
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The Decision : Laziness + Non-determinism =⇒ Semantic alternatives

“Operational” perspective

When is it time to fix a
(partial) value for each argument?

heads(x :y :xs) → (x , y), repeat(x) → x : repeat(x), coin → 0, coin → 1

Call-time choice ⇐= FLP

On parameter passing
heads(repeat(coin))→
heads(repeat(0))→∗

heads(0 : 0 :⊥) → (0, 0)

̸→∗(0, 1)�� ��Rewriting + Sharing

vs.
Run-time choice ⇐= TRS

As they are used
heads(repeat(coin))→∗

heads(coin :coin : repeat(coin))

→ (coin, coin) →∗(0, 0)
→∗(0, 1)�� ��Rewriting
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Previously. . .

Grammars as term rewriting systems

Two standard grammar operators

Alternative: X | Y → X X | Y → Y
Kleene’s star: star(X )→ ϵ | X ++ star(X )

With them

letter → a | b | . . . | z
word → star(letter)

word only works if star is evaluated under run-time choice:

word → star(letter) → letter ++ star(letter) →∗ aaa
→∗ abc

Palindromes (even length)

palindrome → palAux(word) palAux(X )→ X ++ reverse(X )

palindrome only works if palAux is evaluated under call-time choice:

palindrome → palAux(word) → word ++ reverse(word) →∗ abba
̸→∗ oops
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Previously. . .

Moral

No single semantics
for non-determinism is adequate

for all cases
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The Decision : Laziness + Non-determinism =⇒ Semantic alternatives

Denotational perspective

Which domain is used to
instantiate the program rules?

heads(x :y :xs) → (x , y), repeat(x) → x : repeat(x), coin → 0, coin → 1

Singular semantics ⇐= FLP

Variables go to values
heads(repeat(coin))→
heads(repeat(0))→∗

heads(0 : 0 :⊥) → (0, 0)

̸→∗(0, 1)

vs.
Plural semantics ⇐=??? TRS

Variables go to sets of values
heads(repeat(coin))→
heads(repeat({0, 1}))→∗

heads({0 : 1 :⊥, 1 : 0 :⊥,
0 : 0 :⊥, 1 : 1 :⊥})

→ {(0, 0), (0, 1), (1, 0), (1, 1)}
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The Mistake

The Folklore
{

Call-time choice ≡ Singular semantics ✓

Run-time choice ≡ Plural semantics ✘

f (c(x))→ (x , x), x ? y → x , x ? y → y

Run-time choice

⇐= TRS

Argument values are fixed as they
are used

f (c(0)?c(1))→ f (c(0))→ (0, 0)

→ f (c(1))→ (1, 1)

vs.
Plural semantics

̸⇐= TRS

Variables go to sets of values
f (c(0)?c(1))→ f ({c(0), c(1)})
→ ({0, 1}, {0, 1})→∗ (0, 0)

→∗ (0, 1)
→∗ (1, 0)
→∗ (1, 1)

Run-time choice ̸= Plural semantics
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Compositionality

A desirable property . . .

Compositionality : Exps with the same values are interchangeable

[[e]] = [[e′]]⇔ [[C[e]]] = [[C[e′]]]

[[c(0?1)]] = [[c(0)?c(1)]] = {c(0), c(1)}
but with run-time choice, under {f (c(x)) → (x , x), x ? y → x , x ? y → y}

f (c(0?1))→ (0?1, 0?1)→∗ (0, 1) ̸←∗ f (c(0)?c(1))

... becomes fundamental in a value-based language

Philosophy : “All I know about an expression is its set of values”

plural and singular are compositional ⇒ good for value-based langs

run-time choice ⇒ good for other langs and purposes
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This Work

Combining singular + plural
non-determinism

In the same language

- function arguments annotated as singular or plural

• a function is plural or singular if each of its arguments is

- a logic calculus formalizes the intended semantics

resulting framework generalizes both alternatives
preserves compositionality

- programs transformed to a core language according to annotations

Main goal: exploring the expressive capabilities of this combination

Prototype: https://github.com/ariesco/Plural-semantics

https://github.com/ariesco/Plural-semantics
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The Semantics
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The Semantics: CRWLσπ

B
e _ ⊥ RR

x _ x
x ∈ V

DC
e1 _ t1 . . . en _ tn

c(e1, . . . , en) _ c(t1, . . . , tn)
c ∈ CSn, ti ∈ CTerm⊥

OR

e1 _ p1θ11
. . .

e1 _ p1θ1m1

. . .
en _ pnθn1

. . .
en _ pnθnmn rθ _ t

f (e1, . . . , en) _ t
(f (p) → r) ∈ P, θ =?{θ11, . . . , θ1m1} ⊎ . . .⊎ ?{θn1, . . . , θnmn}

∀i , j . θij ∈ CSubst⊥ ∧ dom(θij) = var(pi )
∀i . mi > 0, ∀i ∈ sgArgs(f ). mi = 1
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The Semantics: CRWLσπ

Theorem (Compositionality)

[[C[e]]] =
⋃

{t1,...,tn}⊆[[e]]

[[C[t1 ? . . . ? tn]]]

for any arrangement of the set {t1, . . . , tn} in t1 ? . . . ? tn.
As a consequence: [[e]] = [[e′]]⇔ ∀C. [[C[e]]] = [[C[e′]]].

“all I know about an expression is its set of values”

Theorem (Conservative extension)

For any program P, e ∈ Exp⊥:

1 If every function is singular then [[e]]PCRWLσ
π
= [[e]]PCRWL.

2 If every function is plural then [[e]]PCRWLσ
π
= [[e]]PπCRWL.

[[e]]PCRWLσ
π
, [[e]]PCRWL and [[e]]PπCRWL: denotations for e under P given by

CRWLσπ, singular and plural semantics
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Using CRWLσπ
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Clerks

Performing a search in the database of a company

- System predefined functions: tt is “true” and ff is “false”

X ? Y -> X

X ? Y -> Y

if tt then E -> E

? and if then are plural for flexibility ⇐ singularity is sticky :
once you fix a value it remains fixed

- Different branches defined using ? ∼ set union operator

branches -> madrid ? vigo ? badajoz .

employees(madrid) -> e(john, men, clerk) ? e(larry, men, boss) .

employees(vigo) -> ...

...

plurarity doesn’t matter for ground arguments or no arguments
functions are singular by default
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Clerks

- Enumerating the employees

Maude> (eval employees(branches) .)

Result: e(john,men,clerk)

Maude> (more .)

Result: e(larry,men,boss)

...

- Looking for two clerks
twoclerks -> search(employees(branches)) .

search is plural .

search(e(N,S,clerk)) -> p(N,N) .

Maude> (eval twoclerks .)

Result: p(john,john)

Maude> (more .)

Result: p(john,mary)

Ok, but we want

- two different clerks
- generalize it to any number of clerks
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Clerks

- Adding an element to a list ensuring that the remaining elements are
different

newIns is singular .

newIns(X, Xs) -> cons(X, diffL(X, Xs)) .

diffL(X, nil) -> nil .

diffL(X, cons(Y, Xs)) ->

if neq(X, Y) then cons(Y, diffL(X, Xs)) .

neq(john, larry) -> tt .

neq(john, mary) -> tt .

...

No disequality constraints ⇝ ground version with program rules
Tests like newIns, diffL, neq =⇒ singularity

- Generating lists of different values for an expression
vals is plural .

vals(X) -> newIns(X, vals(X)) .

Combination of plural (vals) and singular (newIns ⇒ tests)
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Clerks

- Generating a number of different values for an expression
nVals is sp .

nVals(N, E) -> take(N, vals(E)) .

sp =⇒
{

N is singular : fixed number
E is plural : different values

Simulation of meta primitives of call-time choice: collect, findall
- Looking for a number of different clerks

nClerks is singular .

nClerks(N) ->

nVals(N, findClerk(employees(branches))) .

findClerk is singular .

findClerk(e(N,S,clerk)) -> N .

Maude> (eval nClerks(s(s(s(z)))) .)

Result: cons(john,cons(mary,cons(laura,nil)))

Rule of thumb

singular arguments fix their the values
plural arguments represent sets of values
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Dungeon

Ulysses has been captured, he wants to cheat his guardians using a
bottomless bag of gold ⇝ he interchanges items and information with his
guardians in order to obtain the key of its jail

- Interchanging items and information
ask is sp .

ask(circe, trojan-gold) -> item(treasure-map) ? sirens-secret .

ask(calypso, sirens-secret) -> item(chest-code) .

ask(aeolus, item(M)) -> combine(M,M) .

ask(polyphemus, combine(treasure-map, chest-code)) -> key .

sp =⇒ fix a guardian, offer several items

- Next step in Ulysses’ path to freedom: several items and their single
provider

askWho is sp .

askWho(Guardian, Message) ->

p(Guardian, ask(Guardian, Message)) .
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Dungeon

- Finding the path for freedom
discoverHow is plural .

discoverHow(T) -> T ? discoverHow(discStepHow(T) ? T) .

discStepHow is plural .

discStepHow(p(W, M)) -> askWho(guardians, M) .

guardians -> circe ? calypso ? aeolus ? polyphemus .

discoverHow

- returns what I had: T

- or performs an interchange and iterates the process

last ? T allows to use
items obtained in different recursive calls

for the same interchange
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Dungeon

- Starting the search

escapeHow -> discoverHow(p(ulysses, trojan-gold)) .

Maude> (eval escapeHow .)

Result: p(ulysses,trojan-gold)

Maude> (more .)

Result: p(circe,item(treasure-map))

Maude> (more .)

Result: p(circe,sirens-secret)

Maude> (more .)

Result: p(calypso,item(chest-code))

...

Maude> (more .)

Result: p(polyphemus,key)

Interesting pattern of plural function

A function that performs deduction by repeatedly combining the
information we have fed it with the information it infers in one step of
deduction
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Implementation
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Two Transformations
From plural to run-time

- Neither run-time can simulate call-time nor vice versa

- But run-time simulates plural easily: just postpone pattern matching

Example

f (c(x)) → (x , x)
=⇒ f (y) → if match(y) then (project(y), project(y)),

match(c(x)) → true, project(c(x)) → x
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Two Transformations
Putting singular/call-time inside run-time

Main idea
start from a run-time choice environment (pure rewriting)

+
add a let primitive for sharing

LExp ∋ e ::= X | h(e1, . . . , en) | let X = e1 in e2

Intended meaning

In the reduction of let X = e1 in e2 all the occurrences of X in e2 share
the value produced by e1

Example

let X = 0 ? 1 in (X ,X ) →∗ (0, 0)
̸→∗ (0, 1)

Transformation

Introduce a let binding for each variable in a singular argument
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The Maude System

Maude is a high-level language and high-performance system
supporting both equational and rewriting logic computation

- Maude modules correspond to specifications in rewriting logic
- In particular it can be used to implement term rewriting systems ≡
run-time choice

A key distinguishing feature of Maude is its systematic and efficient
use of reflection

- It allows many advanced metaprogramming and metalanguage
applications

- Maude also provides modules to specify input/output interactions
with the user

Our program transformations, its execution—including the
implementation of natural rewriting and the operational
semantics—, and the user interactions are implemented in

Maude itself
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Conclusions
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The Contributions

- A formal framework for programming with non-deterministic
functions

Allows the combination of singular and plural non-determinism
A safe extension of both options
Preserves compositionality

- Have explored the expressive capabilities of this combination

Several examples have been presented (more in the paper)
A Maude based prototype has been developed

- Use of plural

Mainstream approaches to FLP only support singular/call-time
Previous mixes employed run-time choice ̸= plural
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The Future

- Extensions

Equality and disequality constraints

Higher order capabilities

Generic discover function
Face the challenges implementing type classes in FLP

Matching modulo

- Understand programs better

Equivalence of annotations ⇝ determinism analysis
Equational laws for non-determinism

- Some kind of sharing of sets of values is needed to improve efficiency
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Try it!!!

https:
//github.com/ariesco/Plural-semantics

https://github.com/ariesco/Plural-semantics
https://github.com/ariesco/Plural-semantics
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