
The Problem What else? The Semantics Using CRWLσπ Implementation The End

Programming with Singular and
Plural Non-deterministic Functions

Adrián Riesco
Juan Rodŕıguez Hortalá

Dept. Sistemas Informáticos y Computación
Universidad Complutense de Madrid

Final EuroProofNet Symposium - Orly, France
September 2025

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Ingredients

Functional programming
+

Laziness
+

Non-determinism

Programs

heads(x :y :xs)→ (x , y)
repeat(x)→ x : repeat(x)

coin→ 0 coin→ 1

Expressions & Values

heads(0 : 1 : repeat(2)) _ (0, 1)
coin _ 0
coin _ 1

Functional Logic Programming (FLP) - Toy, Curry

(Constructor-based) Term Rewriting Systems (TRS) - Maude

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Ingredients

Functional programming
+

Laziness
+

Non-determinism

Programs

heads(x :y :xs)→ (x , y)
repeat(x)→ x : repeat(x)

coin→ 0 coin→ 1

Expressions & Values

heads(0 : 1 : repeat(2)) _ (0, 1)
coin _ 0
coin _ 1

Functional Logic Programming (FLP) - Toy, Curry

(Constructor-based) Term Rewriting Systems (TRS) - Maude

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Decision

Laziness
+

Non-determinism
=⇒ Semantic alternatives

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Decision : Laziness + Non-determinism =⇒ Semantic alternatives

“Operational” perspective

When is it time to fix a
(partial) value for each argument?

heads(x :y :xs) → (x , y), repeat(x) → x : repeat(x), coin → 0, coin → 1

Call-time choice ⇐= FLP

On parameter passing
heads(repeat(coin))→
heads(repeat(0))→∗

heads(0 : 0 :⊥) → (0, 0)

̸→∗(0, 1)�� ��Rewriting + Sharing

vs.
Run-time choice ⇐= TRS

As they are used
heads(repeat(coin))→∗

heads(coin :coin : repeat(coin))

→ (coin, coin) →∗(0, 0)
→∗(0, 1)�� ��Rewriting

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Decision : Laziness + Non-determinism =⇒ Semantic alternatives

“Operational” perspective

When is it time to fix a
(partial) value for each argument?

heads(x :y :xs) → (x , y), repeat(x) → x : repeat(x), coin → 0, coin → 1

Call-time choice ⇐= FLP

On parameter passing
heads(repeat(coin))→
heads(repeat(0))→∗

heads(0 : 0 :⊥) → (0, 0)

̸→∗(0, 1)�� ��Rewriting + Sharing

vs.
Run-time choice ⇐= TRS

As they are used
heads(repeat(coin))→∗

heads(coin :coin : repeat(coin))

→ (coin, coin) →∗(0, 0)
→∗(0, 1)�� ��Rewriting

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Previously. . .

Grammars as term rewriting systems

Two standard grammar operators

Alternative: X | Y → X X | Y → Y
Kleene’s star: star(X)→ ϵ | X ++ star(X)

With them

letter → a | b | . . . | z
word → star(letter)

word only works if star is evaluated under run-time choice:

word → star(letter) → letter ++ star(letter) →∗ aaa
→∗ abc

Palindromes (even length)

palindrome → palAux(word) palAux(X)→ X ++ reverse(X)

palindrome only works if palAux is evaluated under call-time choice:

palindrome → palAux(word) → word ++ reverse(word) →∗ abba
̸→∗ oops

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Previously. . .

Grammars as term rewriting systems

Two standard grammar operators

Alternative: X | Y → X X | Y → Y
Kleene’s star: star(X)→ ϵ | X ++ star(X)

With them

letter → a | b | . . . | z
word → star(letter)

word only works if star is evaluated under run-time choice:

word → star(letter) → letter ++ star(letter) →∗ aaa
→∗ abc

Palindromes (even length)

palindrome → palAux(word) palAux(X)→ X ++ reverse(X)

palindrome only works if palAux is evaluated under call-time choice:

palindrome → palAux(word) → word ++ reverse(word) →∗ abba
̸→∗ oops

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Previously. . .

Grammars as term rewriting systems

Two standard grammar operators

Alternative: X | Y → X X | Y → Y
Kleene’s star: star(X)→ ϵ | X ++ star(X)

With them

letter → a | b | . . . | z
word → star(letter)

word only works if star is evaluated under run-time choice:

word → star(letter) → letter ++ star(letter) →∗ aaa
→∗ abc

Palindromes (even length)

palindrome → palAux(word) palAux(X)→ X ++ reverse(X)

palindrome only works if palAux is evaluated under call-time choice:

palindrome → palAux(word) → word ++ reverse(word) →∗ abba
̸→∗ oops

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Previously. . .

Grammars as term rewriting systems

Two standard grammar operators

Alternative: X | Y → X X | Y → Y
Kleene’s star: star(X)→ ϵ | X ++ star(X)

With them

letter → a | b | . . . | z
word → star(letter)

word only works if star is evaluated under run-time choice:

word → star(letter) → letter ++ star(letter) →∗ aaa
→∗ abc

Palindromes (even length)

palindrome → palAux(word) palAux(X)→ X ++ reverse(X)

palindrome only works if palAux is evaluated under call-time choice:

palindrome → palAux(word) → word ++ reverse(word) →∗ abba
̸→∗ oops

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Previously. . .

Moral

No single semantics
for non-determinism is adequate

for all cases

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Decision : Laziness + Non-determinism =⇒ Semantic alternatives

Denotational perspective

Which domain is used to
instantiate the program rules?

heads(x :y :xs) → (x , y), repeat(x) → x : repeat(x), coin → 0, coin → 1

Singular semantics ⇐= FLP

Variables go to values
heads(repeat(coin))→
heads(repeat(0))→∗

heads(0 : 0 :⊥) → (0, 0)

̸→∗(0, 1)

vs.
Plural semantics ⇐=??? TRS

Variables go to sets of values
heads(repeat(coin))→
heads(repeat({0, 1}))→∗

heads({0 : 1 :⊥, 1 : 0 :⊥,
0 : 0 :⊥, 1 : 1 :⊥})

→ {(0, 0), (0, 1), (1, 0), (1, 1)}

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Decision : Laziness + Non-determinism =⇒ Semantic alternatives

Denotational perspective

Which domain is used to
instantiate the program rules?

heads(x :y :xs) → (x , y), repeat(x) → x : repeat(x), coin → 0, coin → 1

Singular semantics ⇐= FLP

Variables go to values
heads(repeat(coin))→
heads(repeat(0))→∗

heads(0 : 0 :⊥) → (0, 0)

̸→∗(0, 1)

vs.
Plural semantics ⇐=??? TRS

Variables go to sets of values
heads(repeat(coin))→
heads(repeat({0, 1}))→∗

heads({0 : 1 :⊥, 1 : 0 :⊥,
0 : 0 :⊥, 1 : 1 :⊥})

→ {(0, 0), (0, 1), (1, 0), (1, 1)}

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Mistake

The Folklore
{

Call-time choice ≡ Singular semantics ✓

Run-time choice ≡ Plural semantics ✘

f (c(x))→ (x , x), x ? y → x , x ? y → y

Run-time choice

⇐= TRS

Argument values are fixed as they
are used

f (c(0)?c(1))→ f (c(0))→ (0, 0)

→ f (c(1))→ (1, 1)

vs.
Plural semantics

̸⇐= TRS

Variables go to sets of values
f (c(0)?c(1))→ f ({c(0), c(1)})
→ ({0, 1}, {0, 1})→∗ (0, 0)

→∗ (0, 1)
→∗ (1, 0)
→∗ (1, 1)

Run-time choice ̸= Plural semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Mistake

The Folklore
{

Call-time choice ≡ Singular semantics ✓
Run-time choice ≡ Plural semantics ✘

f (c(x))→ (x , x), x ? y → x , x ? y → y

Run-time choice

⇐= TRS

Argument values are fixed as they
are used

f (c(0)?c(1))→ f (c(0))→ (0, 0)

→ f (c(1))→ (1, 1)

vs.
Plural semantics

̸⇐= TRS

Variables go to sets of values
f (c(0)?c(1))→ f ({c(0), c(1)})
→ ({0, 1}, {0, 1})→∗ (0, 0)

→∗ (0, 1)
→∗ (1, 0)
→∗ (1, 1)

Run-time choice ̸= Plural semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Mistake

The Folklore
{

Call-time choice ≡ Singular semantics ✓
Run-time choice ≡ Plural semantics ✘

f (c(x))→ (x , x), x ? y → x , x ? y → y

Run-time choice

⇐= TRS

Argument values are fixed as they
are used

f (c(0)?c(1))→ f (c(0))→ (0, 0)

→ f (c(1))→ (1, 1)

vs.
Plural semantics

̸⇐= TRS

Variables go to sets of values
f (c(0)?c(1))→ f ({c(0), c(1)})
→ ({0, 1}, {0, 1})→∗ (0, 0)

→∗ (0, 1)
→∗ (1, 0)
→∗ (1, 1)

Run-time choice ̸= Plural semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Mistake

The Folklore
{

Call-time choice ≡ Singular semantics ✓
Run-time choice ≡ Plural semantics ✘

f (c(x))→ (x , x), x ? y → x , x ? y → y

Run-time choice ⇐= TRS

Argument values are fixed as they
are used

f (c(0)?c(1))→ f (c(0))→ (0, 0)

→ f (c(1))→ (1, 1)

vs.
Plural semantics

̸⇐= TRS

Variables go to sets of values
f (c(0)?c(1))→ f ({c(0), c(1)})
→ ({0, 1}, {0, 1})→∗ (0, 0)

→∗ (0, 1)
→∗ (1, 0)
→∗ (1, 1)

Run-time choice ̸= Plural semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Mistake

The Folklore
{

Call-time choice ≡ Singular semantics ✓
Run-time choice ≡ Plural semantics ✘

f (c(x))→ (x , x), x ? y → x , x ? y → y

Run-time choice ⇐= TRS

Argument values are fixed as they
are used

f (c(0)?c(1))→ f (c(0))→ (0, 0)

→ f (c(1))→ (1, 1)

vs.
Plural semantics ̸⇐= TRS

Variables go to sets of values
f (c(0)?c(1))→ f ({c(0), c(1)})
→ ({0, 1}, {0, 1})→∗ (0, 0)

→∗ (0, 1)
→∗ (1, 0)
→∗ (1, 1)

Run-time choice ̸= Plural semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Compositionality

A desirable property . . .

Compositionality : Exps with the same values are interchangeable

[[e]] = [[e′]]⇔ [[C[e]]] = [[C[e′]]]

[[c(0?1)]] = [[c(0)?c(1)]] = {c(0), c(1)}
but with run-time choice, under {f (c(x)) → (x , x), x ? y → x , x ? y → y}

f (c(0?1))→ (0?1, 0?1)→∗ (0, 1) ̸←∗ f (c(0)?c(1))

... becomes fundamental in a value-based language

Philosophy : “All I know about an expression is its set of values”

plural and singular are compositional ⇒ good for value-based langs

run-time choice ⇒ good for other langs and purposes

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Compositionality

A desirable property . . .

Compositionality : Exps with the same values are interchangeable

[[e]] = [[e′]]⇔ [[C[e]]] = [[C[e′]]]

[[c(0?1)]] = [[c(0)?c(1)]] = {c(0), c(1)}
but with run-time choice, under {f (c(x)) → (x , x), x ? y → x , x ? y → y}

f (c(0?1))→ (0?1, 0?1)→∗ (0, 1) ̸←∗ f (c(0)?c(1))

... becomes fundamental in a value-based language

Philosophy : “All I know about an expression is its set of values”

plural and singular are compositional ⇒ good for value-based langs

run-time choice ⇒ good for other langs and purposes

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Compositionality

A desirable property . . .

Compositionality : Exps with the same values are interchangeable

[[e]] = [[e′]]⇔ [[C[e]]] = [[C[e′]]]

[[c(0?1)]] = [[c(0)?c(1)]] = {c(0), c(1)}
but with run-time choice, under {f (c(x)) → (x , x), x ? y → x , x ? y → y}

f (c(0?1))→ (0?1, 0?1)→∗ (0, 1) ̸←∗ f (c(0)?c(1))

... becomes fundamental in a value-based language

Philosophy : “All I know about an expression is its set of values”

plural and singular are compositional ⇒ good for value-based langs

run-time choice ⇒ good for other langs and purposes

The Problem What else? The Semantics Using CRWLσπ Implementation The End

This Work

Combining singular + plural
non-determinism

In the same language

- function arguments annotated as singular or plural

• a function is plural or singular if each of its arguments is

- a logic calculus formalizes the intended semantics

resulting framework generalizes both alternatives
preserves compositionality

- programs transformed to a core language according to annotations

Main goal: exploring the expressive capabilities of this combination

Prototype: https://github.com/ariesco/Plural-semantics

https://github.com/ariesco/Plural-semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

This Work

Combining singular + plural
non-determinism

In the same language

- function arguments annotated as singular or plural
• a function is plural or singular if each of its arguments is

• in the previous program:
star is plural

palAux is singular

- a logic calculus formalizes the intended semantics

resulting framework generalizes both alternatives
preserves compositionality

- programs transformed to a core language according to annotations

Main goal: exploring the expressive capabilities of this combination

Prototype: https://github.com/ariesco/Plural-semantics

https://github.com/ariesco/Plural-semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

This Work

Combining singular + plural
non-determinism

In the same language

- function arguments annotated as singular or plural
• a function is plural or singular if each of its arguments is

- a logic calculus formalizes the intended semantics

resulting framework generalizes both alternatives
preserves compositionality

- programs transformed to a core language according to annotations

Main goal: exploring the expressive capabilities of this combination

Prototype: https://github.com/ariesco/Plural-semantics

https://github.com/ariesco/Plural-semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

This Work

Combining singular + plural
non-determinism

In the same language

- function arguments annotated as singular or plural
• a function is plural or singular if each of its arguments is

- a logic calculus formalizes the intended semantics

resulting framework generalizes both alternatives
preserves compositionality

- programs transformed to a core language according to annotations

Main goal: exploring the expressive capabilities of this combination

Prototype: https://github.com/ariesco/Plural-semantics

https://github.com/ariesco/Plural-semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

This Work

Combining singular + plural
non-determinism

In the same language

- function arguments annotated as singular or plural
• a function is plural or singular if each of its arguments is

- a logic calculus formalizes the intended semantics

resulting framework generalizes both alternatives
preserves compositionality

- programs transformed to a core language according to annotations

Main goal: exploring the expressive capabilities of this combination

Prototype: https://github.com/ariesco/Plural-semantics

https://github.com/ariesco/Plural-semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

This Work

Combining singular + plural
non-determinism

In the same language

- function arguments annotated as singular or plural
• a function is plural or singular if each of its arguments is

- a logic calculus formalizes the intended semantics

resulting framework generalizes both alternatives
preserves compositionality

- programs transformed to a core language according to annotations

Main goal: exploring the expressive capabilities of this combination

Prototype: https://github.com/ariesco/Plural-semantics

https://github.com/ariesco/Plural-semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Semantics: CRWLσπ

B
e _ ⊥ RR

x _ x
x ∈ V

DC
e1 _ t1 . . . en _ tn

c(e1, . . . , en) _ c(t1, . . . , tn)
c ∈ CSn, ti ∈ CTerm⊥

OR

e1 _ p1θ11
. . .

e1 _ p1θ1m1

. . .
en _ pnθn1

. . .
en _ pnθnmn rθ _ t

f (e1, . . . , en) _ t
(f (p) → r) ∈ P, θ =?{θ11, . . . , θ1m1} ⊎ . . .⊎ ?{θn1, . . . , θnmn}

∀i , j . θij ∈ CSubst⊥ ∧ dom(θij) = var(pi)
∀i . mi > 0, ∀i ∈ sgArgs(f). mi = 1

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Semantics: CRWLσπ

Theorem (Compositionality)

[[C[e]]] =
⋃

{t1,...,tn}⊆[[e]]

[[C[t1 ? . . . ? tn]]]

for any arrangement of the set {t1, . . . , tn} in t1 ? . . . ? tn.
As a consequence: [[e]] = [[e′]]⇔ ∀C. [[C[e]]] = [[C[e′]]].

“all I know about an expression is its set of values”

Theorem (Conservative extension)

For any program P, e ∈ Exp⊥:

1 If every function is singular then [[e]]PCRWLσ
π
= [[e]]PCRWL.

2 If every function is plural then [[e]]PCRWLσ
π
= [[e]]PπCRWL.

[[e]]PCRWLσ
π
, [[e]]PCRWL and [[e]]PπCRWL: denotations for e under P given by

CRWLσπ, singular and plural semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Semantics: CRWLσπ

Theorem (Compositionality)

[[C[e]]] =
⋃

{t1,...,tn}⊆[[e]]

[[C[t1 ? . . . ? tn]]]

for any arrangement of the set {t1, . . . , tn} in t1 ? . . . ? tn.
As a consequence: [[e]] = [[e′]]⇔ ∀C. [[C[e]]] = [[C[e′]]].

“all I know about an expression is its set of values”

Theorem (Conservative extension)

For any program P, e ∈ Exp⊥:

1 If every function is singular then [[e]]PCRWLσ
π
= [[e]]PCRWL.

2 If every function is plural then [[e]]PCRWLσ
π
= [[e]]PπCRWL.

[[e]]PCRWLσ
π
, [[e]]PCRWL and [[e]]PπCRWL: denotations for e under P given by

CRWLσπ, singular and plural semantics

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Using CRWLσπ

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Clerks

Performing a search in the database of a company

- System predefined functions: tt is “true” and ff is “false”

X ? Y -> X

X ? Y -> Y

if tt then E -> E

? and if then are plural for flexibility ⇐ singularity is sticky :
once you fix a value it remains fixed

- Different branches defined using ? ∼ set union operator

branches -> madrid ? vigo ? badajoz .

employees(madrid) -> e(john, men, clerk) ? e(larry, men, boss) .

employees(vigo) -> ...

...

plurarity doesn’t matter for ground arguments or no arguments
functions are singular by default

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Clerks

- Enumerating the employees

Maude> (eval employees(branches) .)

Result: e(john,men,clerk)

Maude> (more .)

Result: e(larry,men,boss)

...

- Looking for two clerks
twoclerks -> search(employees(branches)) .

search is plural .

search(e(N,S,clerk)) -> p(N,N) .

Maude> (eval twoclerks .)

Result: p(john,john)

Maude> (more .)

Result: p(john,mary)

Ok, but we want

- two different clerks
- generalize it to any number of clerks

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Clerks

- Adding an element to a list ensuring that the remaining elements are
different

newIns is singular .

newIns(X, Xs) -> cons(X, diffL(X, Xs)) .

diffL(X, nil) -> nil .

diffL(X, cons(Y, Xs)) ->

if neq(X, Y) then cons(Y, diffL(X, Xs)) .

neq(john, larry) -> tt .

neq(john, mary) -> tt .

...

No disequality constraints ⇝ ground version with program rules
Tests like newIns, diffL, neq =⇒ singularity

- Generating lists of different values for an expression
vals is plural .

vals(X) -> newIns(X, vals(X)) .

Combination of plural (vals) and singular (newIns ⇒ tests)

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Clerks

- Generating a number of different values for an expression
nVals is sp .

nVals(N, E) -> take(N, vals(E)) .

sp =⇒
{

N is singular : fixed number
E is plural : different values

Simulation of meta primitives of call-time choice: collect, findall
- Looking for a number of different clerks

nClerks is singular .

nClerks(N) ->

nVals(N, findClerk(employees(branches))) .

findClerk is singular .

findClerk(e(N,S,clerk)) -> N .

Maude> (eval nClerks(s(s(s(z)))) .)

Result: cons(john,cons(mary,cons(laura,nil)))

Rule of thumb

singular arguments fix their the values
plural arguments represent sets of values

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Dungeon

Ulysses has been captured, he wants to cheat his guardians using a
bottomless bag of gold ⇝ he interchanges items and information with his
guardians in order to obtain the key of its jail

- Interchanging items and information
ask is sp .

ask(circe, trojan-gold) -> item(treasure-map) ? sirens-secret .

ask(calypso, sirens-secret) -> item(chest-code) .

ask(aeolus, item(M)) -> combine(M,M) .

ask(polyphemus, combine(treasure-map, chest-code)) -> key .

sp =⇒ fix a guardian, offer several items

- Next step in Ulysses’ path to freedom: several items and their single
provider

askWho is sp .

askWho(Guardian, Message) ->

p(Guardian, ask(Guardian, Message)) .

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Dungeon

- Finding the path for freedom
discoverHow is plural .

discoverHow(T) -> T ? discoverHow(discStepHow(T) ? T) .

discStepHow is plural .

discStepHow(p(W, M)) -> askWho(guardians, M) .

guardians -> circe ? calypso ? aeolus ? polyphemus .

discoverHow

- returns what I had: T

- or performs an interchange and iterates the process

last ? T allows to use
items obtained in different recursive calls

for the same interchange

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Dungeon

- Starting the search

escapeHow -> discoverHow(p(ulysses, trojan-gold)) .

Maude> (eval escapeHow .)

Result: p(ulysses,trojan-gold)

Maude> (more .)

Result: p(circe,item(treasure-map))

Maude> (more .)

Result: p(circe,sirens-secret)

Maude> (more .)

Result: p(calypso,item(chest-code))

...

Maude> (more .)

Result: p(polyphemus,key)

Interesting pattern of plural function

A function that performs deduction by repeatedly combining the
information we have fed it with the information it infers in one step of
deduction

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Implementation

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Two Transformations
From plural to run-time

- Neither run-time can simulate call-time nor vice versa

- But run-time simulates plural easily: just postpone pattern matching

Example

f (c(x)) → (x , x)
=⇒ f (y) → if match(y) then (project(y), project(y)),

match(c(x)) → true, project(c(x)) → x

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Two Transformations
From plural to run-time

- Neither run-time can simulate call-time nor vice versa

- But run-time simulates plural easily: just postpone pattern matching

Example

f (c(x)) → (x , x)
=⇒ f (y) → if match(y) then (project(y), project(y)),

match(c(x)) → true, project(c(x)) → x

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Two Transformations
Putting singular/call-time inside run-time

Main idea
start from a run-time choice environment (pure rewriting)

+
add a let primitive for sharing

LExp ∋ e ::= X | h(e1, . . . , en) | let X = e1 in e2

Intended meaning

In the reduction of let X = e1 in e2 all the occurrences of X in e2 share
the value produced by e1

Example

let X = 0 ? 1 in (X ,X) →∗ (0, 0)
̸→∗ (0, 1)

Transformation

Introduce a let binding for each variable in a singular argument

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Two Transformations
Putting singular/call-time inside run-time

Main idea
start from a run-time choice environment (pure rewriting)

+
add a let primitive for sharing

LExp ∋ e ::= X | h(e1, . . . , en) | let X = e1 in e2

Intended meaning

In the reduction of let X = e1 in e2 all the occurrences of X in e2 share
the value produced by e1

Example

let X = 0 ? 1 in (X ,X) →∗ (0, 0)
̸→∗ (0, 1)

Transformation

Introduce a let binding for each variable in a singular argument

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Maude System

Maude is a high-level language and high-performance system
supporting both equational and rewriting logic computation

- Maude modules correspond to specifications in rewriting logic
- In particular it can be used to implement term rewriting systems ≡
run-time choice

A key distinguishing feature of Maude is its systematic and efficient
use of reflection

- It allows many advanced metaprogramming and metalanguage
applications

- Maude also provides modules to specify input/output interactions
with the user

Our program transformations, its execution—including the
implementation of natural rewriting and the operational
semantics—, and the user interactions are implemented in

Maude itself

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Conclusions

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Contributions

- A formal framework for programming with non-deterministic
functions

Allows the combination of singular and plural non-determinism
A safe extension of both options
Preserves compositionality

- Have explored the expressive capabilities of this combination

Several examples have been presented (more in the paper)
A Maude based prototype has been developed

- Use of plural

Mainstream approaches to FLP only support singular/call-time
Previous mixes employed run-time choice ̸= plural

The Problem What else? The Semantics Using CRWLσπ Implementation The End

The Future

- Extensions

Equality and disequality constraints

Higher order capabilities

Generic discover function
Face the challenges implementing type classes in FLP

Matching modulo

- Understand programs better

Equivalence of annotations ⇝ determinism analysis
Equational laws for non-determinism

- Some kind of sharing of sets of values is needed to improve efficiency

The Problem What else? The Semantics Using CRWLσπ Implementation The End

Try it!!!

https:
//github.com/ariesco/Plural-semantics

https://github.com/ariesco/Plural-semantics
https://github.com/ariesco/Plural-semantics

	The Problem
	What else?
	The Semantics
	Using CRWL
	Implementation
	The End

