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Background Motivation

STLC is (weakly) normalizing.

Constructive setting: we want to compute algorithmically the normal form.

Standard Strategy:

1 Construct Algorithm
2 Prove Correctness

Standard Approaches:

1 Algorithm: Normalization by Evaluation
2 Correctness: Logical Relations

Alternative Approach: Category Theory
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The Challenge of Normalization

Problem

Extensionally, normalization does nothing! The output of nf is equal to the input. ∴ nf = id.

Fraction Simplification

nf
(a

b

)
,

a ÷ gcd(a, b)
b ÷ gcd(a, b)

nf
(
4

8

)
≡ 1

2
=Q+

4

8
6=N×N+

1

2

Observation

Extensionally, normalization is the identity. Indeed, this is a correctness property!

Intensionally, normalization is not the identity. Indeed, this is why it is algorithmically useful!
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The Problem with Category Theory

Standard Category Theory is a traditional Mathematical theory.

Easy to express extensional properties.

Difficult to express intensional computational; behaviour.

“All properties and no computation!”

Desideratum

We want an alternate form of Category Theory which can naturallymodel:

extensional properties;

intensional computational behaviour; and

partiality.
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Category Theory Primer

A category is given by the following data:

a collection of objects;

for any two objects a collection of morphisms, x → y;

a composition operation, f ◦ g : x
g−→ y

f−→ z; and

an identity morphism, id : x → x;

such that

composition is associative: (f ◦ g) ◦ h = f ◦ (g ◦ h); and

the identity morphism is both left and right neutral: id ◦ f = f ∧ f = f ◦ id.

The use of equality (“=”) means that often the collection of morphisms has to be quotiented. We
therefore lose all computational behaviour when extensional properties are forced onto structure.
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E-Category Theory Primer

An E-category is given by the following data:

a collection of objects;

for any two objects a collection of morphisms, x → y, equipped with an equivalence relation;

a composition operation: f ◦ g : x
g−→ y

f−→ z; and

an identity morphism: id : x → x;

such that

composition respects the ER: f ∼ f ′ ∧ g ∼ g′ ⇒ (f ◦ g) ∼ (f ′ ◦ g′);

composition is associative: (f ◦ g) ◦ h ∼ f ◦ (g ◦ h); and

the identity morphism is both left and right neutral: id ◦ f ∼ f ∧ f ∼ f ◦ id.
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The use of an equivalence relation (“∼”) means that the collection of morphisms does not need to be
quotiented. We regain computational behaviour.
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An E-category is given by the following data:
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The use of an equivalence relation (“∼”) means that we need to prove that all operations respect the
appropriate ER. We enter “setoid hell”. Fails to model partiality with much elegance.
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P-Category Theory Primer

A P-category is given by the following data:

a collection of objects;

for any two objects a collection of morphisms, x → y, equipped with a partial equivalence relation;

a composition operation: f ◦ g : x
g−→ y

f−→ z; and

an identity morphism: id : x → x;

such that

composition respects the PER: f ∼ f ′ ∧ g ∼ g′ ⇒ (f ◦ g) ∼ (f ′ ◦ g′);

the identity morphism is self-related: id ∼ id;

composition is associative: f ∼ f ′ ∧ g ∼ g′ ∧ h ∼ h′ ⇒ (f ◦ g) ◦ h ∼ f ′ ◦ (g′ ◦ h′); and

the identity morphism is both left and right neutral: f ∼ f ′ ⇒ id ◦ f ∼ f ′ ∧ f ′ ∼ f ◦ id.

The use of a partial ER (“∼”) means that we need to prove that all operations respect the appropriate
PER, but now we have more hypotheses and lack reflexivity. We enter “subsetoid hell”.
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So far so theory!

What about formalizing P-category theory?

David G. Berry (University of Cambridge) Cat Pf= Nat Pf EPNWG4&5, Cambridge, September ‘23 9 / 18



Formalization Decisions

In Coq (I already had experience with it)

Universe Polymorphism (We need to perform constructions at various size levels)

Proof-Relevant PERs (Allows extraction of both program for computation, and correctness

proofs for certification)
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Formalization Experience

Most simple constructions are not that much more complicated than E-category theory, or even

rigorous pen-and-paper category theory.

Some arguments even become more elegant and/or efficient:

associativity law combines two E-steps into one; and

unit laws combine two E-steps into one.

Naturality (in the categorical sense) conditions become cumbersome and tedious pretty quickly.
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Functor Categories

Functor Categories are a standard categorical construction.

They are the categorical generalization of “a set of functions between two sets”.

“a category of functors between two categories”

Objects are functors (≈ structure preserving maps between categories).

Morphisms are natural transformations (≈ objectwise-family of morphisms between functors).

Crucially they must satisfy a naturality condition.

P-Functor Category

Objects are P-functors

Morphisms are:

represented by not-necessarily-natural transformations; and

related when both are natural, and are objectwise related.∗
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Formalizing the Presheaf Exponential

Presheaf categories are an instance of a functor category.

They have an exponential (≈ the collection of morphisms between two objects can be modelled

by an object of the category).

This is an important construction for our work, and is somewhat non-trivial.

The definition of an exponential utilises natural transformations between functors valued in

functor categories.

This means that:
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Subsetoid Hell?

forall x : PFun (POppCat C) PSet, (forall a a' : forall x0 : C, x x0 -> forall x1 : C, PCat_hom x1 x0 -> F x1 -> G x1, IsPNatural (
POppCat C) PSet x (PPshfExp G F) a * IsPNatural (POppCat C) PSet x (PPshfExp G F) a' * (forall (x0 : C) (a0 a'0 : x x0), a0 ~ a'0 -> (
forall (x1 y : C) (f f' : PCat_hom x1 y), f ~ f' -> forall k k' : PCat_hom y x0, k ~ k' -> forall s s' : F y, s ~ s' -> PFun_hom_of G f
(a x0 a0 y (PCat_comp (PCat_comp (PCat_id_mor x0) k) (PCat_id_mor y)) (PFun_hom_of F (PCat_id_mor y) s)) ~ PFun_hom_of G (PCat_id_mor x1
) (a x0 a0 x1 (PCat_comp (PCat_comp (PCat_id_mor x0) k') f') (PFun_hom_of F f' s'))) * (forall (x1 y : C) (f f' : PCat_hom x1 y), f ~ f'
-> forall k k' : PCat_hom y x0, k ~ k' -> forall s s' : F y, s ~ s' -> PFun_hom_of G f (a' x0 a'0 y (PCat_comp (PCat_comp (PCat_id_mor
x0) k) (PCat_id_mor y)) (PFun_hom_of F (PCat_id_mor y) s)) ~ PFun_hom_of G (PCat_id_mor x1) (a' x0 a'0 x1 (PCat_comp (PCat_comp (
PCat_id_mor x0) k') f') (PFun_hom_of F f' s'))) * (forall (x1 : C) (k k' : PCat_hom x1 x0), k ~ k' -> forall s s' : F x1, s ~ s' -> a x0
a0 x1 k s ~ a' x0 a'0 x1 k' s')) -> IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G (fun (x0 : C) (X : x x0 * F x0
) => a x0 (fst X) x0 (PCat_id_mor x0) (snd X)) * IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G (fun (x0 : C) (X :
x x0 * F x0) => a' x0 (fst X) x0 (PCat_id_mor x0) (snd X)) * (forall (x0 : C) (a0 a'0 : x x0 * F x0), (fst a0 ~ fst a'0) * (snd a0 ~
snd a'0) -> a x0 (fst a0) x0 (PCat_id_mor x0) (snd a0) ~ a' x0 (fst a'0) x0 (PCat_id_mor x0) (snd a'0))) * (forall a a' : forall x0 : C,
x x0 * F x0 -> G x0, IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G a * IsPNatural (POppCat C) PSet (PCompFun
PCartProdFun (PPairFun x F)) G a' * (forall (x0 : C) (a0 a'0 : x x0 * F x0), (fst a0 ~ fst a'0) * (snd a0 ~ snd a'0) -> a x0 a0 ~ a' x0
a'0) -> IsPNatural (POppCat C) PSet x (PPshfExp G F) (fun (x0 : C) (s : x x0) (z : C) (f : PCat_hom z x0) (r : F z) => a z (PFun_hom_of
x f s, r)) * IsPNatural (POppCat C) PSet x (PPshfExp G F) (fun (x0 : C) (s : x x0) (z : C) (f : PCat_hom z x0) (r : F z) => a' z (
PFun_hom_of x f s, r)) * (forall (x0 : C) (a0 a'0 : x x0), a0 ~ a'0 -> (forall (x1 y : C) (f f' : PCat_hom x1 y), f ~ f' -> forall k k'
: PCat_hom y x0, k ~ k' -> forall s s' : F y, s ~ s' -> PFun_hom_of G f (a y (PFun_hom_of x (PCat_comp (PCat_comp (PCat_id_mor x0) k) (
PCat_id_mor y)) a0, PFun_hom_of F (PCat_id_mor y) s)) ~ PFun_hom_of G (PCat_id_mor x1) (a x1 (PFun_hom_of x (PCat_comp (PCat_comp (
PCat_id_mor x0) k') f') a0, PFun_hom_of F f' s'))) * (forall (x1 y : C) (f f' : PCat_hom x1 y), f ~ f' -> forall k k' : PCat_hom y x0, k
~ k' -> forall s s' : F y, s ~ s' -> PFun_hom_of G f (a' y (PFun_hom_of x (PCat_comp (PCat_comp (PCat_id_mor x0) k) (PCat_id_mor y)) a
'0, PFun_hom_of F (PCat_id_mor y) s)) ~ PFun_hom_of G (PCat_id_mor x1) (a' x1 (PFun_hom_of x (PCat_comp (PCat_comp (PCat_id_mor x0) k')
f') a'0, PFun_hom_of F f' s'))) * (forall (x1 : C) (k k' : PCat_hom x1 x0), k ~ k' -> forall s s' : F x1, s ~ s' -> a x1 (PFun_hom_of x
k a0, s) ~ a' x1 (PFun_hom_of x k' a'0, s'))))

times ??? (This is but a small glimpse!)
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A Categorical Proof

Ĉ
(
K,GF

) ∼=∫
c

Set
(
Kc,GF c

)
≡

∫
c

Set

(
Kc,

∫
c′
C(c′, c) ⇒ Fc′ ⇒ Gc′

)
∼=
∫
c

∫
c′
Set

(
Kc,C(c′, c) ⇒ Fc′ ⇒ Gc′

)
∼=
∫
c′

∫
c

Set
(
Kc,C(c′, c) ⇒ Fc′ ⇒ Gc′

)
∼=
∫
c′

∫
c

Set
(
Kc × C(c′, c), Fc′ ⇒ Gc′

)
∼=
∫
c′
Set

(∫ c

Kc × C(c′, c), Fc′ ⇒ Gc′
)

∼=
∫
c′
Set(Kc′, Fc′ ⇒ Gc′)

∼=
∫
c′
Set(Kc′ × Fc′,Gc′) ∼= Ĉ(K × F ,G)
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Advantages

High-level, compositional, abstract proof: good for properties!

Each categorical step is a useful categorical building block.

More generally useful results justify complexity;

Although, often simpler/more mechanical.

Sheds more light on P-category theory.

Easy to communicate to category theorists (i.e., natural proof).

More resilient to small definition changes due to isolation.
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Disadvantages

High-level, compositional, abstract proof: bad for computational behaviour!

Lack of strictness for functors with identities and composition, results in gratuitous indirections.

Requires more formalization effort.

Not so straightforward to translate into a combinatorial presentation for formalization.
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Solution: Mild Hell

1 Formalize the high-level categorical proof (extensional properties favourable).

2 Construct the low-level solution by hand (intensional computational behaviour favourable).

3 Prove that the two implementations are equivalent.

For computation: dispatch to the low-level construction.

For properties: dispatch to the high-level proof.
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