Categorical Proofs are Natural Proofs

David G. Berry (University of Camb:

David G. Berry

j-w.w. Marcelo P. Fiore

University of Cambridge

Joint WG4 & WG5 Meeting
University of Cambridge
September 2023

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DA



Outline

@ Background Motivation
© Relevant Category Theory
© Formalization

© Presheaf Exponential

© Conclusions

EPN WG4&5, Cambridge, September 23 2/18



Background Motivation
@ STLC is (weakly) normalizing.

o Constructive setting: we want to compute algorithmically the normal form.

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DA

3/18



Background Motivation
@ STLC is (weakly) normalizing.
o Standard Strategy:

o Constructive setting: we want to compute algorithmically the normal form.
@ Construct Algorithm
@ Prove Correctness

David G. Berr

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DAy
3/18



Background Motivation
@ STLC is (weakly) normalizing.
o Standard Strategy:

o Constructive setting: we want to compute algorithmically the normal form.
@ Construct Algorithm
@ Prove Correctness

o Standard Approaches:

@ Algorithm: Normalization by Evaluation
@ Correctness: Logical Relations

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DAy
3/18



Background Motivation
@ STLC is (weakly) normalizing.
o Standard Strategy:

o Constructive setting: we want to compute algorithmically the normal form.
@ Construct Algorithm
@ Prove Correctness

o Standard Approaches:

@ Algorithm: Normalization by Evaluation
@ Correctness: Logical Relations

@ Alternative Approach: Category Theory

David G. Berry (University of Cambridge)

Cat Pf = Nat Pf

[m]

= DA
EPN WG4&5, Cambridge, September 23 3/18



The Challenge of Normalization
Extensionally, normalization does nothing! The output of nf is equal to the input. .. nf

=id.

David G. Berry (University of Camb:

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

Dac

4/18



The Challenge of Normalization

Extensionally, normalization does nothing! The output of nf is equal to the input. .. nf = id.

Fraction Simplification

David G. Berry (University of Cambridge) Cat Pf = Nat Pf EPN WG4&5, Cambridge, September 23



The Challenge of Normalization

Extensionally, normalization does nothing! The output of nf is equal to the input. .". nf = id

Fraction Simplification

)A a =+ ged(a, b)
b= ged(a, b)

4 1 4 1

>

—
/N
SIS

Observation

o Extensionally, normalization is the identity. Indeed, this is a correctness property!

o Intensionally, normalization is not the identity. Indeed, this is why it is algorithmically useful!

o

David G. Berry (University of Cambridge)

Cat Pf = Nat Pf

EPN WG4&5, Cambridge, September 23 4/18



The Problem with Category Theory

o Standard Category Theory is a traditional Mathematical theory.
o Easy to express extensional properties.

e Difficult to express intensional computational; behaviour.
@ “All properties and no computation!”

sity of Camb

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DAy
5/18



The Problem with Category Theory

o Standard Category Theory is a traditional Mathematical theory.

o Easy to express extensional properties.
e Difficult to express intensional computational; behaviour.

@ “All properties and no computation!”

Desideratum

We want an alternate form of Category Theory which can naturally model:
@ extensional properties;
@ intensional computational behaviour; and

@ partiality.

David G. Berry (University of C Cat Pf = Nat Pf EPN WG4&5, Cambridge, September 23 5/18



Category Theory Primer

A category is given by the following data:

@ a collection of objects;
@ for any two objects a collection of morphisms, x — y;
@ a composition operation, f 0 g : x LN y i> z; and

@ an identity morphism, id : x — x;
such that

@ composition is associative: (f o g) o h = f o (go h);and

o the identity morphism is both left and right neutral: ido f = f A f = f oid.

[m] =l =
David G. Berry (University of Cambridge)

DA
EPN WG4&5, Cambridge, September 23 6/18

Cat Pf = Nat Pf



Category Theory Primer
A category is given by the following data:
@ a collection of objects;
@ for any two objects a collection of morphisms, x — y;

@ a composition operation, f 0 g : x LN y = z;and
@ an identity morphism, id : x — x;
such that

@ composition is associative: (f o g) o h = f o (go h);and

o the identity morphism is both left and right neutral: ido f = f A f = f oid.

The use of equality (“=") means that often the collection of morphisms has to be quotiented. We

Cat Pf = Nat Pf

therefore lose all computational behaviour when extensional properties are forced onto structure.
David G. Berry (University of Camb:

J

EPN WG4&5, Cambridge, September 23

DAy
6/18



E-Category Theory Primer

An E-category is given by the following data:
@ a collection of objects;
o for any two objects a collection of morphisms, x — y, equipped with an equivalence relation;
@ a composition operation: f o g : x 5, y L) z; and
@ an identity morphism: id : x — x;
such that
@ composition respectsthe ER: f ~ f' A g~ g = (fog) ~ (f o g);
@ composition is associative: (f o g) o h ~ f o (g o h); and

o the identity morphism is both left and right neutral: ido f ~ f A f ~ f oid.

o (=3 = DA
David G. Berry (University of Cambridge) EPN WG4&5, Cambridge, September 23 7/18

Cat Pf = Nat Pf



E-Category Theory Primer

An E-category is given by the following data:
@ a collection of objects;
o for any two objects a collection of morphisms, x — y, equipped with an equivalence relation;
@ acomposition operation: f o g : x £, y i) z; and
@ an identity morphism: id : x — x;
such that
@ composition respects the ER: f ~ f A g~ g = (fog) ~ (f o g);
@ composition is associative: (f o g) o h ~ f o (go h);and

o the identity morphism is both left and right neutral: ido f ~ f A f ~ f oid.

The use of an equivalence relation (“~”) means that the collection of morphisms does not need to be
quotiented. We regain computational behaviour.

=] = = = £ DA
EPN WG4&5, Cambridge, September 23 7/18

David G. Berry (University of Cambridge) Cat Pf = Nat Pf




E-Category Theory Primer

An E-category is given by the following data:
@ a collection of objects;
o for any two objects a collection of morphisms, x — y, equipped with an equivalence relation;
@ acomposition operation: f o g : x £, y i) z; and
@ an identity morphism: id : x — x;
such that
@ composition respects the ER: f ~ f A g~ g = (fog) ~ (f o g);
@ composition is associative: (f o g) o h ~ f o (go h);and

o the identity morphism is both left and right neutral: ido f ~ f A f ~ f oid.

The use of an equivalence relation (“~”) means that we need to prove that all operations respect the
appropriate ER. We enter “setoid hell”. Fails to model partiality with much elegance.

o g = T 9ac

EPN WG4&5, Cambridge, September 23 7/18

David G. Berry (University of Cambridge) Cat Pf = Nat Pf




P-Category Theory Primer

A P-category is given by the following data:

@ a collection of objects;
@ for any two objects a collection of morphisms, x — y, equipped with a partial equivalence relation;
@ a composition operation: f o g : x 3 y i> z; and

@ an identity morphism: id : x — x;
such that

@ composition respects the PER: f ~ f' A g~ g = (fog) ~ (f o g');

o the identity morphism is self-related: id ~ id;

@ composition is associative: f ~ f' ANg~ g Ah~K = (fog)oh~ f o(g oh');and
o the identity morphism is both left and right neutral: f ~ f' = ido f ~ f' Af' ~ f oid.

o & - = = DaAe
EPN WG4&5, Cambridge, September 23 8/18

David G. Berry (University of Cambridge) Cat Pf = Nat Pf




P-Category Theory Primer

A P-category is given by the following data:

@ a collection of objects;
@ for any two objects a collection of morphisms, x — y, equipped with a partial equivalence relation;
@ a composition operation: f o g : x 3 y i> z; and
@ an identity morphism: id : x — x;
such that
@ composition respects the PER: f ~ f' A g~ g = (fog) ~ (f o g');
o the identity morphism is self-related: id ~ id;
@ composition is associative: f ~ f' Ag~ g ANh~Hh = (fog)oh~ f o(g oh');and
o the identity morphism is both left and right neutral: f ~ f' = ido f ~ f' Af' ~ f oid.

The use of a partial ER (“~”) means that we need to prove that all operations respect the appropriate
PER, but now we have more hypotheses and lack reflexivity. We enter “subsetoid hell”.

o & = = £ 9Darx

EPN WG4&5, Cambridge, September 23 8/18

David G. Berry (University of Cambridge) Cat Pf = Nat Pf




So far so theory!

What about formalizing P-category theory?

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DAy
9/18




Formalization Decisions

@ In Coq (I already had experience with it)

@ Universe Polymorphism (We need to perform constructions at various size levels)

@ Proof-Relevant PERs (Allows extraction of both program for computation, and correctness
proofs for certification)

o &
EPN WG4&5, Cambridge, September 23

Cat Pf = Nat Pf

DAy
10/18



Formalization Experience

rigorous pen-and-paper category theory.

@ Some arguments even become more elegant and/or efficient:
e associativity law combines two E-steps into one; and

@ Most simple constructions are not that much more complicated than E-category theory, or even
e unit laws combine two E-steps into one.

@ Naturality (in the categorical sense) conditions become cumbersome and tedious pretty quickly.

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DAy
11/18



Functor Categories

@ Functor Categories are a standard categorical construction.

@ They are the categorical generalization of “a set of functions between two sets”.
o “a category of functors between two categories”

@ Objects are functors (/= structure preserving maps between categories).

@ Crucially they must satisfy a naturality condition.

@ Morphisms are natural transformations (= objectwise-family of morphisms between functors).

bridge)

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DAy
12/18



Functor Categories

Functor Categories are a standard categorical construction.

They are the categorical generalization of “a set of functions between two sets”.
o “acategory of functors between two categories”

Objects are functors (A structure preserving maps between categories).

Morphisms are natural transformations (= objectwise-family of morphisms between functors).

Crucially they must satisfy a naturality condition.

P-Functor Category

@ Objects are P-functors
@ Morphisms are:

o represented by not-necessarily-natural transformations; and
o related when both are natural, and are objectwise related.*

David G. Berry (Univer “ambridge) Cat Pf = Nat Pf EPN WG4&5, Cambridge, September 23 12/18



Formalizing the Presheaf Exponential

@ Presheaf categories are an instance of a functor category.

by an object of the category).

@ They have an exponential (= the collection of morphisms between two objects can be modelled
o This means that:

@ This is an important construction for our work, and is somewhat non-trivial.
functor categories.

@ The definition of an exponential utilises natural transformations between functors valued in

David G. Berr

rsity of Cambridge)

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DAy
13/18



Subsetoid Hell?

forall x : PFun (POppCat C) PSet, (forall a a' : forall x0 : C, x xO -> forall x1 : C, PCat_hom x1 xO -> F x1 -> G x1, IsPNatural (
POppCat C) PSet x (PPshfExp G F) a * IsPNatural (POppCat C) PSet x (PPshfExp G F) a' * (forall (x0 : C) (a0 a'0 : x x0), a0 ~ a'0 -> (
forall (x1 y : C) (f £' : PCat_hom x1 y), f ~ £' -> forall k k' : PCat_hom y x0, k ~ k' -> forall s s' : Fy, s ~s' -> PFun_hom_of G f
(a x0 a0 y (PCat_comp (PCat_comp (PCat_id_mor x0) k) (PCat_id_mor y)) (PFun_hom_of F (PCat_id_mor y) s)) ~ PFun_hom_of G (PCat_id_mor x1
) (a x0 a0 x1 (PCat_comp (PCat_comp (PCat_id_mor x0) k') f') (PFun_hom_of F f' s'))) * (forall (x1 y : C) (f £' : PCat_hom x1 y), f ~ f'
-> forall k k' : PCat_hom y x0, k ~ k' -> forall s s' : Fy, s ~ s' -> PFun_hom_of G f (a' x0 a'0 y (PCat_comp (PCat_comp (PCat_id_mor
x0) k) (PCat_id_mor y)) (PFun_hom_of F (PCat_id_mor y) s)) ~ PFun_hom_of G (PCat_id_mor x1) (a' x0 a'0 x1 (PCat_comp (PCat_comp (
PCat_id_mor x0) k') £') (PFun_hom_of F f' s'))) * (forall (x1 : C) (k k' : PCat_hom x1 x0), k ~ k' -> forall s s' : F x1, s ~s' -> a x0
a0 x1 ks ~a' x0 a'0 x1 k' s')) -> IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G (fun (x0 : C) (X : x x0 * F x0
) => a x0 (fst X) x0 (PCat_id_mor x0) (snd X)) * IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G (fun (x0 : C) (X :
x x0 * F x0) => a' x0 (fst X) x0 (PCat_id_mor x0) (snd X)) * (forall (x0 : C) (a0 a'0O : x x0 * F x0), (fst a0 ~ fst a'0) * (snd a0 ~
snd a'0) -> a x0 (fst a0) x0 (PCat_id_mor x0) (snd a0) ~ a' x0 (fst a'0) x0 (PCat_id_mor x0) (snd a'0))) * (forall a a' : forall x0 : C,
x x0 * F x0 -> G x0, IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G a * IsPNatural (POppCat C) PSet (PCompFun
PCartProdFun (PPairFun x F)) G a' * (forall (x0 : C) (a0 a'0 : x x0 * F x0), (fst a0 ~ fst a'0) * (snd a0 ~ snd a'0) -> a x0 a0 ~ a' x0
a'0) -> IsPNatural (POppCat C) PSet x (PPshfExp G F) (fun (x0 : C) (s : x x0) (z : C) (f : PCat_hom z x0) (r : F z) => a z (PFun_hom_of
x £ s, r)) * IsPNatural (POppCat C) PSet x (PPshfExp G F) (fun (x0 : C) (s : x x0) (z : C) (f : PCat_hom z x0) (r : F z) => a' z (
PFun_hom_of x f s, r)) * (forall (x0 : C) (a0 a'0 : x x0), a0 ~ a'0 -> (forall (x1 y : C) (f £' : PCat_hom x1 y), £ ~ £' -> forall k k'
: PCat_hom y x0, k ~ k' -> forall s s' : Fy, s ~s' -> PFun_hom_of G £ (a y (PFun_hom_of x (PCat_comp (PCat_comp (PCat_id_mor x0) k) (
PCat_id_mor y)) a0, PFun_hom_of F (PCat_id_mor y) s)) ~ PFun_hom_of G (PCat_id_mor x1) (a x1 (PFun_hom_of x (PCat_comp (PCat_comp (
PCat_id_mor x0) k') f') a0, PFun_hom_of F f' s'))) * (forall (x1 y : C) (f f' : PCat_hom x1 y), £ ~ f' -> forall k k' : PCat_hom y x0, k
~ k' -> forall s s' : Fy, s ~s' ->PFun_hom_of G £ (a' y (PFun_hom_of x (PCat_comp (PCat_comp (PCat_id_mor x0) k) (PCat_id_mor y)) a
'0, PFun_hom_of F (PCat_id_mor y) s)) ~ PFun_hom_of G (PCat_id_mor x1) (a' x1 (PFun_hom_of x (PCat_comp (PCat_comp (PCat_id_mor x0) k')
f') a'0, PFun_hom_of F f' s'))) * (forall (x1 : C) (k k' : PCat_hom x1 x0), k ~ k' -> forall s s' : Fx1, s ~s' -> a x1 (PFun_hom_of x
k a0, s) ~ a' x1 (PFun_hom_of x k' a'0, s'))))

times ??? (This is but a small glimpse!)




A Categorical Proof

C (K, GF) ﬁ/Set (Kc GFC) = /Set (Kc,/ C(d,¢) = F' = Gc’)
//Set Kc C(d,c) = F :>Gc)
%’/, /Set Kc,(C(c',c) = F/ = Gc/)
%// /Set(Kc x C(,¢),Fd = Gc')

%/ Set (/ Kex C(d,¢), F = Gc/)

/ Set(Kc', F' = G¢')

C/

12

1%

/ Set(Kc' x Fc',Gc') = C(K x F, G)

o

o & = = DA
David G. Berry (University of Cambridge) ) EPN WG4&5, Cambridge, September 23 15/18

Cat Pf = Nat Pf



@ High-level, compositional, abstract proof: good for properties!

@ Each categorical step is a useful categorical building block.
e More generally useful results justify complexity;

o Although, often simpler/more mechanical.
@ Sheds more light on P-category theory.

@ Easy to communicate to category theorists (i.e, natural proof).
@ More resilient to small definition changes due to isolation.
sity of Camb

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DAy
16/18



Disadvantages

@ High-level, compositional, abstract proof: bad for computational behaviour!

@ Lack of strictness for functors with identities and composition, results in gratuitous indirections.
@ Requires more formalization effort.

@ Not so straightforward to translate into a combinatorial presentation for formalization.

=] =3 = DAy

EPN WG4&5, Cambridge, September 23 17/18



Solution: Mild Hell

@ Formalize the high-level categorical proof (extensional properties favourable).

@ Construct the low-level solution by hand (intensional computational behaviour favourable)
© Prove that the two implementations are equivalent.

o For computation: dispatch to the low-level construction.
e For properties: dispatch to the high-level proof.

David G. Berr

rsity of Cambri

Cat Pf = Nat Pf

[m]

EPN WG4&5, Cambridge, September 23

DAy
18/18



