Categorical Proofs are Natural Proofs

David G. Berry j.w.w. Marcelo P. Fiore

University of Cambridge

Joint WG4 & WG5 Meeting University of Cambridge September 2023

- **Background Motivation**
- Relevant Category Theory
- Formalization 3
- Presheaf Exponential
- Conclusions 6

3

- STLC is (weakly) normalizing.
- Constructive setting: we want to compute algorithmically the normal form.

- STLC is (weakly) normalizing.
- Constructive setting: we want to compute algorithmically the normal form.
- Standard Strategy:
 - Construct Algorithm
 - Prove Correctness 2

- STLC is (weakly) normalizing.
- Constructive setting: we want to compute algorithmically the normal form.
- Standard Strategy:
 - Construct Algorithm
 - Prove Correctness
- Standard Approaches:
 - Algorithm: Normalization by Evaluation
 - Orrectness: Logical Relations

- STLC is (weakly) normalizing.
- Constructive setting: we want to compute algorithmically the normal form.
- Standard Strategy:
 - Construct Algorithm
 - Prove Correctness
- Standard Approaches:
 - Algorithm: Normalization by Evaluation
 - Orrectness: Logical Relations
- Alternative Approach: Category Theory

Problem

Extensionally, normalization does nothing! The output of nf is equal to the input. \therefore nf = id.

Problem

Extensionally, normalization does nothing! The output of nf is equal to the input. \therefore nf = id.

Fraction Simplification

$$\begin{split} \mathsf{nf}\left(\frac{a}{b}\right) &\triangleq \frac{a \div \mathsf{gcd}(a, b)}{b \div \mathsf{gcd}(a, b)} \\ \mathsf{nf}\left(\frac{4}{8}\right) &\equiv \frac{1}{2} =_{\mathbb{Q}^+} \frac{4}{8} \neq_{\mathbb{N} \times \mathbb{N}^+} \frac{1}{2} \end{split}$$

• • = • •

Problem

Extensionally, normalization does nothing! The output of nf is equal to the input. \therefore nf = id.

Fraction Simplification

$$\begin{split} \mathsf{nf}\left(\frac{a}{b}\right) &\triangleq \frac{a \div \mathsf{gcd}(a, b)}{b \div \mathsf{gcd}(a, b)} \\ \mathsf{f}\left(\frac{4}{8}\right) &\equiv \frac{1}{2} =_{\mathbb{Q}^+} \frac{4}{8} \neq_{\mathbb{N} \times \mathbb{N}^+} \frac{1}{2} \end{split}$$

Observation

- Extensionally, normalization is the identity. Indeed, this is a correctness property!
- Intensionally, normalization is not the identity. Indeed, this is why it is algorithmically useful!

▶ ▲ @ ▶ ▲ 글 ▶ ▲ 글 ▶

The Problem with Category Theory

• Standard Category Theory is a traditional Mathematical theory.

- Easy to express extensional properties.
- Difficult to express intensional computational; behaviour.
- "All properties and no computation!"

The Problem with Category Theory

• Standard Category Theory is a traditional Mathematical theory.

- Easy to express extensional properties.
- Difficult to express intensional computational; behaviour.
- "All properties and no computation!"

Desideratum

We want an alternate form of Category Theory which can *naturally* model:

- extensional properties;
- intensional computational behaviour; and
- partiality.

Category Theory Primer

A *category* is given by the following data:

- a collection of *objects*;
- for any two objects a collection of *morphisms*, $x \rightarrow y$;
- a composition operation, $f \circ g : x \xrightarrow{g} y \xrightarrow{f} z$; and
- an identity morphism, id : $x \rightarrow x$;

such that

- composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$; and
- the identity morphism is both left and right neutral: id $\circ f = f \wedge f = f \circ id$.

Category Theory Primer

A *category* is given by the following data:

- a collection of *objects*;
- for any two objects a collection of *morphisms*, $x \rightarrow y$;
- a composition operation, $f \circ g : x \xrightarrow{g} y \xrightarrow{f} z$; and
- an identity morphism, id : $x \rightarrow x$;

such that

- composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$; and
- the identity morphism is both left and right neutral: id $\circ f = f \wedge f = f \circ id$.

The use of equality ("=") means that often the collection of morphisms has to be quotiented. We therefore lose all computational behaviour when extensional properties are forced onto structure.

An *E-category* is given by the following data:

- a collection of *objects*;
- for any two objects a collection of *morphisms*, $x \rightarrow y$, equipped with an *equivalence relation*;
- a composition operation: $f \circ g : x \xrightarrow{g} y \xrightarrow{f} z$; and
- an identity morphism: id : $x \rightarrow x$;

such that

- composition respects the ER: $f \sim f' \wedge g \sim g' \Rightarrow (f \circ g) \sim (f' \circ g');$
- composition is associative: $(f \circ g) \circ h \sim f \circ (g \circ h)$; and
- the identity morphism is both left and right neutral: id $\circ f \sim f \wedge f \sim f \circ id$.

E-Category Theory Primer

An *E-category* is given by the following data:

- a collection of *objects*;
- for any two objects a collection of *morphisms*, $x \rightarrow y$, equipped with an *equivalence relation*;
- a composition operation: $f \circ g : x \xrightarrow{g} y \xrightarrow{f} z$; and
- an identity morphism: id : $x \rightarrow x$;

such that

- composition respects the ER: $f \sim f' \wedge g \sim g' \Rightarrow (f \circ g) \sim (f' \circ g');$
- composition is associative: $(f \circ g) \circ h \sim f \circ (g \circ h)$; and
- the identity morphism is both left and right neutral: id $\circ f \sim f \wedge f \sim f \circ$ id.

The use of an equivalence relation (" \sim ") means that the collection of morphisms does not need to be quotiented. We regain computational behaviour.

ъ

医脊髓下的 医下颌下的

E-Category Theory Primer

An *E-category* is given by the following data:

- a collection of *objects*;
- for any two objects a collection of *morphisms*, $x \rightarrow y$, equipped with an *equivalence relation*;
- a composition operation: $f \circ g : x \xrightarrow{g} y \xrightarrow{f} z$; and
- an identity morphism: id : $x \rightarrow x$;

such that

- composition respects the ER: $f \sim f' \wedge g \sim g' \Rightarrow (f \circ g) \sim (f' \circ g');$
- composition is associative: $(f \circ g) \circ h \sim f \circ (g \circ h)$; and
- the identity morphism is both left and right neutral: id $\circ f \sim f \wedge f \sim f \circ id$.

The use of an equivalence relation (" \sim ") means that we need to prove that all operations respect the appropriate ER. We enter "setoid hell". Fails to model partiality with much elegance.

э

A D A A B A A B A A B A

P-Category Theory Primer

A *P*-category is given by the following data:

- a collection of *objects*;
- for any two objects a collection of *morphisms*, $x \rightarrow y$, equipped with a *partial* equivalence relation;
- a composition operation: $f \circ g : x \xrightarrow{g} y \xrightarrow{f} z$; and
- an identity morphism: id : $x \rightarrow x$;

such that

- composition respects the PER: $f \sim f' \wedge g \sim g' \Rightarrow (f \circ g) \sim (f' \circ g');$
- $\bullet\,$ the identity morphism is self-related: id $\sim\,$ id;
- composition is associative: $f \sim f' \wedge g \sim g' \wedge h \sim h' \Rightarrow (f \circ g) \circ h \sim f' \circ (g' \circ h')$; and
- the identity morphism is both left and right neutral: $f \sim f' \Rightarrow \mathrm{id} \circ f \sim f' \wedge f' \sim f \circ \mathrm{id}$.

P-Category Theory Primer

A *P*-category is given by the following data:

- a collection of *objects*;
- for any two objects a collection of *morphisms*, $x \rightarrow y$, equipped with a *partial* equivalence relation;
- a composition operation: $f \circ g : x \xrightarrow{g} y \xrightarrow{f} z$; and
- an identity morphism: id : $x \rightarrow x$;

such that

- composition respects the PER: $f \sim f' \wedge g \sim g' \Rightarrow (f \circ g) \sim (f' \circ g');$
- $\bullet\,$ the identity morphism is self-related: id $\sim\,$ id;
- composition is associative: $f \sim f' \wedge g \sim g' \wedge h \sim h' \Rightarrow (f \circ g) \circ h \sim f' \circ (g' \circ h')$; and
- the identity morphism is both left and right neutral: $f \sim f' \Rightarrow \mathrm{id} \circ f \sim f' \wedge f' \sim f \circ \mathrm{id}$.

The use of a **partial** ER (" \sim ") means that we need to prove that all operations respect the appropriate PER, but now we have more hypotheses and lack reflexivity. We enter "subsetoid hell".

3

く ロ ト く 潤 ト く 三 ト く 三 ト

What about formalizing P-category theory?

- In Coq (I already had experience with it)
- Universe Polymorphism (We need to perform constructions at various size levels)
- Proof-Relevant PERs (Allows extraction of both program for computation, and correctness proofs for certification)

- Most simple constructions are not that much more complicated than E-category theory, or even rigorous pen-and-paper category theory.
- Some arguments even become more elegant and/or efficient:
 - associativity law combines two E-steps into one; and
 - unit laws combine two E-steps into one.
- Naturality (in the categorical sense) conditions become cumbersome and tedious pretty quickly.

- Functor Categories are a standard categorical construction.
- They are the categorical generalization of "a set of functions between two sets".
 - "a category of functors between two categories"
- Objects are functors (\approx structure preserving maps between categories).
- Morphisms are natural transformations (pprox objectwise-family of morphisms between functors).
- Crucially they must satisfy a *naturality* condition.

- Functor Categories are a standard categorical construction.
- They are the categorical generalization of "a set of functions between two sets".
 - "a category of functors between two categories"
- Objects are functors (\approx structure preserving maps between categories).
- Morphisms are natural transformations (\approx objectwise-family of morphisms between functors).
- Crucially they must satisfy a *naturality* condition.

P-Functor Category

- Objects are P-functors
- Morphisms are:
 - represented by not-necessarily-natural transformations; and
 - related when *both* are natural, and are objectwise related.*

- Presheaf categories are an instance of a functor category.
- They have an exponential (≈ the collection of morphisms between two objects can be modelled by an object of the category).
- This is an important construction for our work, and is somewhat non-trivial.
- The definition of an exponential utilises natural transformations between functors valued in functor categories.
- This means that:

forall x : PFun (POppCat C) PSet, (forall a a' : forall x0 : C, x x0 -> forall x1 : C, PCat hom x1 x0 -> F x1 -> G x1, IsPNatural (POppCat C) PSet x (PPshfExp G F) a * IsPNatural (POppCat C) PSet x (PPshfExp G F) a' * (forall (x0 : C) (a0 a'0 : x x0), a0 ~ a'0 -> (forall (x1 v : C) (f f' : PCat hom x1 v), f ~ f' -> forall k k' : PCat hom v x0, k ~ k' -> forall s s' : F v, s ~ s' -> PFun hom of G f (a x0 a0 y (PCat_comp (PCat_id_mor x0) k) (PCat_id_mor y)) (PFun_hom_of F (PCat_id_mor y) s)) ~ PFun_hom_of G (PCat_id_mor x1) (a x0 a0 x1 (PCat comp (PCat comp (PCat id mor x0) k') f') (PFun hom of F f' s'))) * (forall (x1 v : C) (f f' : PCat hom x1 v). f ~ f' -> forall k k' : PCat hom v x0, k ~ k' -> forall s s' : F v, s ~ s' -> PFun hom of G f (a' x0 a'0 v (PCat comp (PCat comp (PCat id mor x0) k) (PCat id mor y)) (PFun hom of F (PCat id mor y) s)) ~ PFun hom of G (PCat id mor x1) (a' x0 a'0 x1 (PCat comp (PCat comp (PCat id mor x0) k') f') (PFun hom of F f' s'))) * (forall (x1 : C) (k k' : PCat hom x1 x0), k ~ k' -> forall s s' : F x1, s ~ s' -> a x0 a0 x1 k s ~ a' x0 a'0 x1 k' s')) -> IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G (fun (x0 : C) (X : x x0 * F x0) => a x0 (fst X) x0 (PCat_id_mor x0) (snd X)) * IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G (fun (x0 : C) (X : x x0 * F x0) => a' x0 (fst X) x0 (PCat id mor x0) (snd X)) * (forall (x0 : C) (a0 a'0 : x x0 * F x0). (fst a0 ~ fst a'0) * (snd a0 ~ snd a'0) \rightarrow a x0 (fst a0) x0 (PCat id mor x0) (snd a0) ~ a' x0 (fst a'0) x0 (PCat id mor x0) (snd a'0))) * (forall a a' : forall x0 : C. x x0 * F x0 -> G x0, IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G a * IsPNatural (POppCat C) PSet (PCompFun PCartProdFun (PPairFun x F)) G a' * (forall (x0 : C) (a0 a'0 : x x0 * F x0), (fst a0 ~ fst a'0) * (snd a0 ~ snd a'0) -> a x0 a0 ~ a' x0 a'0) -> IsPNatural (POppCat C) PSet x (PPshfExp G F) (fun (x0 : C) (s : x x0) (z : C) (f : PCat hom z x0) (r : F z) => a z (PFun hom of x f s, r)) * IsPNatural (POppCat C) PSet x (PPshfExp G F) (fun (x0 : C) (s : x x0) (z : C) (f : PCat hom z x0) (r : F z) => a' z (PFun_hom_of x f s, r)) * (forall (x0 : C) (a0 a'0 : x x0), a0 ~ a'0 -> (forall (x1 y : C) (f f' : PCat_hom x1 y), f ~ f' -> forall k k' : PCat how v x0, $k \sim k' \rightarrow$ forall s s' : F v, s ~ s' \rightarrow PFun hom of G f (a v (PFun hom of x (PCat comp (PCat id mor x0) k) (PCat id mor y)) a0. PFun hom of F (PCat id mor y) s)) ~ PFun hom of G (PCat id mor x1) (a x1 (PFun hom of x (PCat comp (PCat comp (PCat_id_mor x0) k') f') a0, PFun hom_of F f' s'))) * (forall (x1 y : C) (f f' : PCat_hom x1 y), f ~ f' -> forall k k' : PCat_hom y x0, k ~ k' -> forall s s' : F v, s ~ s' -> PFun hom of G f (a' v (PFun hom of x (PCat comp (PCat comp (PCat id mor x0) k) (PCat id mor v)) a '0. PFun hom of F (PCat id mor v) s)) ~ PFun hom of G (PCat id mor x1) (a' x1 (PFun hom of x (PCat comp (PCat comp (PCat id mor x0) k') f') a'0, PFun_hom_of F f' s'))) * (forall (x1 : C) (k k' : PCat_hom x1 x0), k ~ k' -> forall s s' : F x1, s ~ s' -> a x1 (PFun_hom_of x k a0, s) ~ a' x1 (PFun hom of x k' a'0, s'))))

times ??? (This is but a small glimpse!)

イロト イポト イヨト イヨト 三日

A Categorical Proof

$$\widehat{\mathbb{C}}(K, G^{F}) \cong \int_{c} \operatorname{Set}(Kc, G^{F}c) \equiv \int_{c} \operatorname{Set}(Kc, \int_{c'} \mathbb{C}(c', c) \Rightarrow Fc' \Rightarrow Gc')$$

$$\cong \int_{c} \int_{c'} \int_{c} \operatorname{Set}(Kc, \mathbb{C}(c', c) \Rightarrow Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \int_{c} \operatorname{Set}(Kc \times \mathbb{C}(c', c), Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \operatorname{Set}(Kc \times \mathbb{C}(c', c), Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \operatorname{Set}(Kc', Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \operatorname{Set}(Kc', Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \operatorname{Set}(Kc' \times Fc', Gc') \cong \widehat{\mathbb{C}}(K \times F, G)$$

David G. Berry (University of Cambridge)

- High-level, compositional, abstract proof: good for properties!
- Each categorical step is a useful categorical building block.
 - More generally useful results justify complexity;
 - Although, often simpler/more mechanical.
- Sheds more light on P-category theory.
- Easy to communicate to category theorists (*i.e., natural* proof).
- More resilient to small definition changes due to isolation.

- High-level, compositional, abstract proof: bad for computational behaviour!
- Lack of strictness for functors with identities and composition, results in gratuitous indirections.
- Requires more formalization effort.
- Not so straightforward to translate into a combinatorial presentation for formalization.

- Formalize the high-level categorical proof (extensional properties favourable).
- **②** Construct the low-level solution by hand (intensional computational behaviour favourable).
- Prove that the two implementations are equivalent.
 - For computation: dispatch to the low-level construction.
 - For properties: dispatch to the high-level proof.