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Part 1

Background: Philosophy
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What is Mathematics?

Mathematics is a process for understanding the mathematical
aspects of the world.

Here is how it works:

1. A mathematical model consisting of objects, concepts, and
facts is created to describe a mathematical phenomenon
exhibited in the world.

2. The model is explored in various ways to discover new
objects, concepts, and facts related to the model.

3. This enriched model then provides a deeper understanding
of the mathematical phenomenon being modeled.

Example: A computer internet modeled as a bipartite graph
of hosts and physical networks.

The building blocks for mathematical models are
mathematical structures.
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What is a Mathematical Structure?

A first-order mathematical structure is a nonempty set D of
values plus a set of distinguished elements, functions, and
relations over D. Example: (N, 0,+,≤).

A general mathematical structure (structure for short) is a
pair S = (D,A) where:

1. D is a nonempty finite set of base domains that are
nonempty sets of values.

2. A is a set of distinguished values that are members of the
domains in {B} ∪ D or domains constructed from these
domains by the function space, power set, Cartesian
product, and Kleene star operations. B = {t, f}.

Example: A monoid ({m}, {·, e}), where m is a nonempty
set, · : (m×m)→ m is an associative function, and e ∈ m is
an identity element with respect to ·, is a structure.
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What is Mathematical Knowledge?

Mathematical knowledge is knowledge about the
mathematics process, that is, knowledge about the creation
and exploration of mathematical models.

Since structures are the building blocks of mathematical
models, the core of mathematical knowledge is knowledge
about structures, their components, and their relationships
with each other.

Formal mathematical knowledge is mathematical knowledge
expressed in a formal logic.
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What is a Formal Logic?

We define a formal logic as a family of formal languages with:

1. A precise common syntax.
2. A precise common semantics with a notion of logical

consequence.
3. A formal proof system for proving that a statement is a

logical consequence of a set of statements.

Examples: first-order logic, set theory, simple type theory,
dependent type theory.
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Part 1

Background: Alonzo
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Formal Mathematics for the Masses

The 50-year-old campaign to transform traditional
mathematical practice into a formal discipline has been both
a great success and a great failure.

At NatFoM 2021 I have proposed an alternative approach to
formal mathematics that:

1. Is fully formal except proofs are written in a traditional
(informal) style.

2. Emphasizes the communication of mathematical ideas
instead of the formal certification of mathematical results.

First step: Develop a formal logic suitable for practical use
with or without software support.

First step is done: We have developed a logic called Alonzo
and presented it in a textbook Simple Type Theory [Fa23].

Next steps: Demonstrate this alternative approach using
Alonzo and develop software to support it.
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Alonzo: Overview

Alonzo is a version of simple type theory [Fa08] that is based
on Church’s type theory (CTT) [Ch40].

Has a simple syntax with two kinds of notation.

Admits partial functions and undefined expressions.

Employs two semantics, one for math and one for logic.

Has a simple and elegant proof system derived from Peter
Andrews’ proof system for Q0 [An02].

Equipped with theories and theory morphisms, the tools
needed for building libraries of mathematical knowledge.
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Alonzo: Syntax

Alonzo has two kinds of syntactic entities:

1. Types that denote nonempty sets of values.
2. Expressions that either denote values (when they are

defined) or denote nothing (when they are undefined).

There are two notations for types and expressions:

1. A formal notation, an “internal” syntax for machines.
2. A compact notation, an “external” syntax for humans that

resembles the notation found in mathematical practice.
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Alonzo: Types

A type of Alonzo (denoted by α, β, . . .) is a string of symbols
defined inductively by:

T1. Type of truth values: BoolTy is a type.
T2. Base type: BaseTy(a) is a type where a is any base type symbol.
T3. Function type: FunTy(α, β) is a type.
T4. Product type: ProdTy(α, β) is a type.

A type is presented in the formal notation when it is written
as a string according to this definition.
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Alonzo: Expressions

An expression of type α of Alonzo (denoted by Aα,Bα, . . .) is
a string of symbols defined inductively by:

E1. Variable: Var(x, α) is an expression of type α where x is any
variable symbol.

E2. Constant: Con(c, α) is an expression of type α where c is any
constant symbol.

E3. Equality: Eq(Aα,Bα) is an expression of type BoolTy.
E4. Function application: FunApp(Fα→β ,Aα) is an expression of

type β.
E5. Function abstraction: FunAbs(Var(x, α),Bβ) is an expression of

type FunTy(α, β).
E6. Definite description: DefDes(Var(x, α),ABoolTy) is an expression

of type α where α 6= BoolTy.
E7. Ordered pair: OrdPair(Aα,Bβ) is an expression of

type ProdTy(α, β).

An expression is presented in the formal notation when it is
written as a string according to this definition.
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Alonzo: Compact Notation

The compact notation for types and expressions is introduced
in Simple Type Theory [Fa23] by:
I 131 notational definitions.
I 13 notational conventions.

A notational definition, with the form A stands for B , is for:
I Introducing a standard mathematical notation.
I Defining a useful operator, binder, or abbreviation.
I Defining a notation in which a variable symbol is bound to a

set-valued expression (called quasitype) instead of to a type.

A notational convention is for simplifying notation, e.g., by:
I Dropping matching parentheses when meaning is not lost.
I Dropping types from variables and constants when meaning

is not lost.
I Condensing blocks of quantifiers.
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Compact Notation for Types and Expressions

Notational definitions for types:

o stands for BoolTy.
a stands for BaseTy(a).
(α→ β) stands for FunTy(α, β).
(α× β) stands for ProdTy(α, β).

Notational definitions for expressions:

(x : α) stands for Var(x, α).
cα stands for Con(c, α).
(Aα = Bα) stands for Eq(Aα,Bα).
(Fα→β Aα) stands for FunApp(Fα→β,Aα).
(λ x : α . Bβ) stands for FunAbs(Var(x, α),Bβ).
(I x : α . Ao) stands for DefDes(Var(x, α),Ao).
(Aα,Bβ) stands for OrdPair(Aα,Bβ).
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Parametric Polymorphism

Alonzo has no parametric polymorphism at the object level.
I Alonzo does not have type variables.
I All constants have a fixed type.

Alonzo has parametric polymorphism at the meta level.
I Parametric pseudoconstants are defined by notational

definitions.
I Facts about parametric pseudoconstants are proved in “little

theories” and then transported to other contexts as needed.

Alonzo is not a polymorphic logic, but it supports
polymorphic reasoning!
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Notational Definitions for Boolean Operators

To stands for (λ x : o . x) = (λ x : o . x).
Fo stands for (λ x : o . To) = (λ x : o . x).
∧o→o→o stands for λ x : o . λ y : o .

(λ g : o → o → o . g To To) =
(λ g : o → o → o . g x y).

(Ao ∧ Bo) stands for ∧o→o→o Ao Bo .
⇒o→o→o stands for λ x : o . λ y : o . x = (x ∧ y).
(Ao ⇒ Bo) stands for ⇒o→o→o Ao Bo .
¬o→o stands for λ x : o . x = Fo .
(¬Ao) stands for ¬o→o Ao .
∨o→o→o stands for λ x : o . λ y : o . ¬(¬x ∧ ¬y).
(Ao ∨ Bo) stands for ∨o→o→o Ao Bo .
ifo→α→α→α stands for λ b : o . λ x : α . λ y : α .

I z : α . (b ⇒ z = x) ∧ (¬b ⇒ z = y).
(Ao 7→ Bα | Cα) stands for ifo→α→α→α Ao Bα Cα.
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Notational Definitions for Binary Operators

(Aα c Bα) stands for cα→α→β Aα Bα or c(α×α)→β (Aα,Bα).
(Ao ⇔ Bo) stands for Ao = Bo .
(Aα 6= Bα) stands for ¬(Aα = Bα).
(Aα < Bα) stands for (≤α→α→o Aα Bα) ∧ (Aα 6= Bα).
(Aα > Bα) stands for Bα < Aα.
(Aα ≥ Bα) stands for Bα ≤ Aα.
(Aα = Bα = Cα) stands for (Aα = Bα) ∧ (Bα = Cα).
(Aα c Bα d Cα) stands for (Aα c Bα) ∧ (Bα d Cα).
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Notational Definitions for Quantifiers

(∀ x : α . Ao) stands for (λ x : α . To) = (λ x : α . Ao).
(∃ x : α . Ao) stands for ¬(∀ x : α . ¬Ao).
(∃! x : α . Ao) stands for ∃ y : α . (λ x : α . Ao) = (λ x : α . x = y)

where y is not free in (λ x : α . Ao).
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Notational Definitions for Definedness

⊥o stands for Fo .
⊥α stands for I x : α . x 6= x where α 6= o.
∆α→β stands for λ x : α . ⊥β where β 6= o.
(Aα↓) stands for Aα = Aα.
(Aα↑) stands for ¬(Aα↓).
(Aα ' Bα) stands for (Aα↓ ∨ Bα↓)⇒ Aα = Bα.
(Aα 6' Bα) stands for ¬(Aα ' Bα).
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Alonzo: Semantics

In Henkin’s general models semantics [He50] for CTT,
function domains do not need to contain all possible
functions.

Alonzo’s semantics is a modified form of the general models
semantics that admits undefined expressions in accordance
with the traditional approach to undefinedness [Fa04].
I An undefined expression denotes no value at all.
I A function domain contains both partial and total functions.

Alonzo has effectively two semantics:

1. Semantics of math. practice based on standard models for
which there is no sound and complete proof system.

2. Semantics of logical practice based on general models for
which there is a sound and complete proof system.
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Traditional Approach to Undefinedness

The traditional approach to undefinedness, which is widely
practiced in mathematics, is based on three principles:

1. Atomic expressions (i.e., variables and constants) are always
defined.

2. Compound expressions may be undefined.
I A function application f (a) is undefined if f is undefined, a

is undefined, or a 6∈ dom(f ).
I A definite description I x ∈ S . E is undefined if there is not

exactly one a ∈ S for which E is true.

3. Formulas are always true or false and hence defined.
I So, by convention, a predicate application p(a) = f if p is

undefined, a is undefined, or a 6∈ dom(p).

There are two kinds of equality:

1. Equality: a = b if a and b are defined and equal.
2. Quasi-equality: a ' b if a = b or a and b are undefined.
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Benefits of the Traditional Approach

Meaningful statements can involve undefined expressions.

∀ x ∈ R . 0 ≤ x ⇒ (
√
x)2 = x .

0 ≤ −2⇒ (
√
−2)2 = −2.

Function domains can be implicit.

k(x) ' 1
x + 1

x−1 .(
f
g

)
(x) ' f (x)

g(x) .

Definedness assumptions can be implicit, and as a result,
expressions involving undefinedness can be very concise.

∀ x , y , z ∈ R . x
y = z ⇒ x = y ∗ z .

Values can be defined implicitly using definite description.
√
x ' I y ∈ R . 0 ≤ y ∧ y2 = x .
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Calculus Examples from [Fa23]

Def10: lim(R→R)→R→R =
λ f : R → R . λ a : R . I b : R .

(∀ e : R . 0 < e ⇒
(∃ d : R . 0 < d ∧

(∀ x : R . 0 < |x − a| < d ⇒
|f x − b| < e))) (limit of a function).

Def14: cont-at(R→R)→R→o =
λ f : R → R . λ a : R . lim

x→a
f x = f a

(continuous at a point).
Thm27: ∀ f , g : R → R , a, b : R .

(cont-on-closed-int f a b ∧ g = λ x : R .
∫ x

a
(f s) ds)⇒

((∀ x : R . a < x < b ⇒ deriv-at g x = f x) ∧
right-deriv-at g a = f a ∧
left-deriv-at g b = f b)

(fundamental theorem of calculus).
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Part 1

Background: Little Theories Method
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Languages

A language (or signature) of Alonzo is a pair L = (B, C)
where:

1. B is a finite set of base types.
2. C is a set of constants.

The base types and constants represent the base domains
and distinguished values of a structure, respectively.

A language specifies a set of expressions.
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Theories

A theory of Alonzo is a pair T = (L, Γ) where L is a language
and Γ is a set of sentences of L (called the axioms of T ).

A theory specifies the set of structures defined by:

1. The standard models of T .
2. The general models of T .
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Developments

A development of Alonzo is a pair D = (T ,Ξ) where T is a
theory and Ξ is a sequence of definitions and theorems in T .
I T is the bottom theory of D.
I T plus the definitions in Ξ is the top theory of D.

D is said to be a development of T .
I (T , [ ]) is the trivial development of T .
I We identity T with its trivial development.

W. M. Farmer Little Theories 29/65



Theory Morphisms

Let T1 and T2 be theories of Alonzo.

A theory morphism Φ from T1 to T2 is a mapping of the
expressions of T1 to the expressions of T2 such that:

1. Base types are mapped to types and quasitypes.
2. Constants are mapped to expressions.
3. Valid sentences are mapped to valid sentences.

The image of T1 in T2 under Φ is an instance of T1.
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Development Morphisms

Let D1 and D2 be developments of Alonzo.

A development morphism Φ from D1 to D2 is, roughly
speaking, a theory morphism from the top theory of D1 to
the top theory of D2.

A defined constant of D1 can be mapped in three ways:

1. Explicitly to a constant of D2.
2. Explicitly to a nonconstant of D2.
3. Implicitly to an expression of D2.

The image of D1 under Φ in D2 is an instance of D1.

The definitions and theorems of D1 can be transported to D2

via a development morphism from D1 to D2.
I That is, the definitions and theorems of D1 can be

transported to all instances of D1.
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Theory and Development Graphs

A theory graph [KRZ10] is a directed graph whose nodes are
theories and whose edges are theory morphisms.

A development graph is a directed graph whose nodes are
developments and whose edges are development morphisms.
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Little Theories Method

The little theories method [FGT92] is an attractive and
powerful method for organizing mathematical knowledge:

1. A body of mathematical knowledge is represented as a
development graph G .

2. Each mathematical topic is developed in a development D
of the “little theory” T in G that has the most convenient
level of abstraction and the most convenient vocabulary.

3. The definitions and theorems produced in D are transported,
as needed, from D to other, usually more concrete,
developments in G via the development morphisms in G .

Provides a strong form of polymorphism since the theorems
of a development hold in all instances of the development.

The little theories method unleashes the power of the
axiomatic method!
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Alonzo is Well Suited for the Little Theories Method

1. Alonzo is designed for reasoning about structures.
I Base types represent the base domains of a structure.
I Constants represent the distinguished values of a structure.
I Alonzo has types for function spaces α→ β, Cartesian

products α× β, and power sets {α}.
I Alonzo has quasitypes for infinite lists 〈α〉 and finite lists [α].

2. Alonzo admits categorical theories (in the standard sense).
I Alonzo has higher-order quantification.

3. Development morphisms can map base types to quasitypes.
I Alonzo has notational definitions and conventions to enable

quasitypes to be treated like types.
I Alonzo can directly represent the partial functions that arise.

4. Alonzo is equipped with mathematical knowledge modules for
constructing developments and development morphisms.
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Part 2

A Formalization of Monoid Theory in Alonzo
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Monoid Theory

A monoid is a structure ({m}, {·, e}) or (m, ·, e) where:

1. m is a nonempty set of values.
2. · : (m ×m)→ m is an associative function.
3. e ∈ m is an identity element with respect to ·.

Mathematics and computing are replete with examples of
monoids such as (N,+, 0), (N, ∗, 1), and (Σ∗,++, ε).

Monoid theory is the set of the concepts, properties, and
facts about monoids.
I Lacks the rich structure of group theory.
I But has enough structure to adequately illustrate the little

theories method.

We have formalized monoid theory in Alonzo as a
development graph using the little theories method.
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Definition of a Monoid in Alonzo

We need a way to say in Alonzo that a triple
(M{α},F(α×α)→α,Eα) denotes a monoid.

So we introduce an abbreviation via a notational definition:

MONOID(M{α},F(α×α)→α,Eα)

stands for

M{α}↓ ∧
M{α} 6= ∅{α} ∧
F(α×α)→α ↓ (M{α} ×M{α})→M{α} ∧
Eα ↓M{α} ∧
∀ x , y , z : M{α} .

F(α×α)→α (x ,F(α×α)→α (y , z)) = F(α×α)→α (F(α×α)→α (x , y), z) ∧
∀ x : M{α} . F(α×α)→α (Eα, x) = F(α×α)→α (x ,Eα) = x .

Notice that M{α} is a quasitype within α.

W. M. Farmer Little Theories 37/65



Application of the Little Theories Method

Let T = (L, Γ) be a theory of Alonzo. We can show that
(M{α},F(α×α)→α,Eα) denotes a monoid in T by proving

T � MONOID(M{α},F(α×α)→α,Eα).

We may need general definitions and theorems about
monoids to prove properties in T about this triple.

It would be extremely inefficient to state these definitions
and prove these theorems in T .

Instead we should develop a little theory Tmon of monoids.

The definitions and theorems of monoids can be introduced
in a development Dmon of Tmon in a universal abstract form.

Then these definitions and theorems can be transported to a
development D via a development morphism from Dmon to D.
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Theory Definition (Monoids)

Name: MON.

Base types: M .

Constants: ·(M×M)→M , eM .

Axioms:

1. ∀ x , y , z : M . x · (y · z) = (x · y) · z (· is associative).
2. ∀ x : M . e · x = x · e = x

(e is an identity element with respect to ·).
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Development Definition (Monoids 1)

Name: MON-1.

Bottom theory: MON.

Definitions and theorems:

Thm1: MONOID(U{M}, ·(M×M)→M , eM)
(models of MON define monoids).

Thm2: TOTAL(·) (· is total).
Thm3: ∀ x : M . (∀ y : M . x · y = y · x = y)⇒ x = e

(uniqueness of identity element).
Def1: submonoid{M}→o =
λ s : {M} . s 6= ∅{M} ∧ (·�s×s ↓ (s × s)→ s) ∧ e ∈ s

(submonoid).
Thm4: ∀ s : {M} . submonoid s ⇒ MONOID(s, ·�s×s , e)

(submonoids are monoids).
Thm5: submonoid {e} (minimum submonoid).
Thm6: submonoidU{M} (maximum submonoid).
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Def2: ·op(M×M)→M = λ p : M ×M . (snd p) · (fst p)

(opposite of ·).
Thm7: ∀ x , y , z : M . x ·op (y ·op z) = (x ·op y) ·op z

(·op is associative).
Thm8: ∀ x : M . e ·op x = x ·op e = x

(e is an identity element with respect to ·op).
Def3: �({M}×{M})→{M} =

set-op((M×M)→M)→(({M}×{M})→{M}) · (set product).
Def4: E{M} = {eM} (set identity element).
Thm9: ∀ x , y , z : {M} . x � (y � z) = (x � y) � z

(� is associative).
Thm10: ∀ x : {M} . E � x = x � E = x

(E is an identity element with respect to �).

set-op((α×β)→γ)→(({α}×{β})→{γ})

stands for

λ f : (α× β)→ γ . λ p : {α} × {β} .
{z : γ | ∃ x : fst p, y : snd p . z = f (x , y)}.
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Opposite Monoids

(M , ·op(M×M)→M , e) is a monoid in MON-1 called the opposite

monoid of (M , ·(M×M)→M , eM).

We can prove this directly using Thm7 and Thm8.

A better approach is to construct a development morphism
from MON to MON-1 that maps

(M, ·(M×M)→M , eM)

to

(M, ·op(M×M)→M , e).

This establishes an information conduit for transporting
information about monoids to corresponding information
about their opposite monoids.
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Development Translation (MON to Opposite Monoid)

Name: MON-to-opposite-monoid.

Source development: MON.

Target development: MON-1.

Base type mapping:

1. M 7→ M.

Constant mapping:

1. ·(M×M)→M 7→ ·
op
(M×M)→M .

2. eM 7→ eM .

This translation is normal and thus is a development
morphism by Thm7 and Thm8 of MON-1.

It can be used to transport a theorem to its dual form.

Example: x = y ⇒ x · z = y · z 7→ x = y ⇒ z · x = z · y .
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Theorem Transportation (Transport of Thm1 to MON-1)

Name: monoid-via-MON-to-opposite-monoid.

Source development: MON.

Target development: MON-1.

Development morphism: MON-to-opposite-monoid.

Theorem:

Thm1: MONOID(U{M}, ·(M×M)→M , eM)
(models of MON define monoids).

Transported theorem:

Thm11 (Thm1-via-MON-to-opposite-monoid):
MONOID(U{M}, ·

op
(M×M)→M , eM)

(opposite monoids are monoids).

New target development: MON-2.
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Set Monoids

({M},�({M}×{M})→{M},E{M}) is a monoid in MON-1 called
the set monoid of (M , ·(M×M)→M , eM).

We will prove this by constructing a development morphism
from MON to MON-2 that maps

(M, ·(M×M)→M , eM)

to

({M},�({M}×{M})→{M},E{M}).
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Development Translation (MON to Set Monoid)

Name: MON-to-set-monoid.

Source development: MON.

Target development: MON-2.

Base type mapping:

1. M 7→ {M}.
Constant mapping:

1. ·(M×M)→M 7→ �({M}×{M})→{M}.
2. eM 7→ E{M}.

This translation is normal and thus is a morphism by Thm9
and Thm10 of MON-2.
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Theorem Transportation (Transport of Thm1 to MON-2)

Name: monoid-via-MON-to-set-monoid.

Source development: MON.

Target development: MON-2.

Development morphism: MON-to-set-monoid.

Theorem:

Thm1: MONOID(U{M}, ·(M×M)→M , eM)
(models of MON define monoids).

Transported theorem:

Thm12 (Thm1-via-MON-to-set-monoid):
MONOID(U{{M}},�({M}×{M})→{M},E{M})

(set monoids are monoids).

New target development: MON-3.
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Development Graph for Monoid Theory
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Transformation Monoids

Let s be a nonempty set and (f , ◦, id) be a triple where:

1. f is a set of (partial or total) functions from s to s.
2. ◦ : ((s → s)× (s → s))→ (s → s) is function composition.
3. id : s → s is the identity function.

(f , ◦, id) a transformation monoid on s if both:

1. f is closed under ◦.
2. id ∈ f .

Theorem. Every transformation monoid is a monoid.

How should we formalize this theorem?

First, we define a theory T with one base type representing s.

Second, we develop T so that we can state and prove the
theorem.
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Theory Definition (One Base Type)

Name: ONE-BT.

Base types: S .

Constants:

Axioms:

idα→α

stands for

λ x : α . x

◦((α→β)×(β→γ))→(α→γ)

stands for

λ p : (α→ β)× (β → γ) . λ x : α . (snd p) ((fst p) x).
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Theory Development (One Base Type 1)

Name: ONE-BT-1

Bottom theory: ONE-BT

Definitions and theorems

Thm13: ∀ f , g , h : S → S . f ◦ (g ◦ h) = (f ◦ g) ◦ h
(◦ is associative).

Thm14: ∀ f : S → S . idS→S ◦ f = f ◦ idS→S = f
(idS→S is an identity element with respect to ◦).

Def5: trans-monoid{S→S}→o =
λ s : {S → S} .
s 6= ∅{S→S} ∧ (◦�s×s ↓ (s × s)→ s) ∧ idS→S ∈ s

(transformation monoid).
Thm15: ∀ s : {S → S} .

trans-monoid s ⇒ MONOID(s, ◦�s×s , idS→S)
(transformation monoids are monoids).

This is the wrong approach!
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Theory Definition (Function Composition)

Name: FUN-COMP.

Base types: A,B ,C ,D.

Constants:

Axioms:

Development Definition (Function Composition 1)

Name: FUN-COMP-1.

Bottom theory: FUN-COMP.

Definitions and theorem:

Thm13: ∀ f : A→ B, g : B → C , h : C → D .
f ◦ (g ◦ h) = (f ◦ g) ◦ h (◦ is associative).

Thm14: ∀ f : A→ B . idA→A ◦ f = f ◦ idB→B = f
(identity functions are left and right identity elements).
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Theory Translation (FUN-COMP to ONE-BT)

Name: FUN-COMP-to-ONE-BT.

Source development: FUN-COMP.

Target development: ONE-BT.

Base type mapping:

1. A 7→ S .
2. B 7→ S .
3. C 7→ S .
4. D 7→ S .

Constant mapping:

This translation is a morphism since it is normal and
FUN-COMP contains no constants or axioms.
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Group Transportation (Thm13 and Thm14 to ONE-BT)

Name:
function-composition-theorems-via-FUN-COMP-to-ONE-BT.

Source development: FUN-COMP-1.

Target development: ONE-BT.

Development morphism: FUN-COMP-to-ONE-BT.

Definitions and theorems:

Thm13: ∀ f : A→ B, g : B → C , h : C → D .
f ◦ (g ◦ h) = (f ◦ g) ◦ h (◦ is associative).

Thm14: ∀ f : A→ B . idA→A ◦ f = f ◦ idB→B = f
(identity functions are left and right identity elements).
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Transported definitions and theorems:

Thm15 (Thm13-via-FUN-COMP-to-ONE-BT):
∀ f , g , h : S → S . f ◦ (g ◦ h) = (f ◦ g) ◦ h

(◦ is associative).
Thm16 (Thm14-via-FUN-COMP-to-ONE-BT):
∀ f : S → S . idS→S ◦ f = f ◦ idS→S = f

(idS→S is an identity element with respect to ◦).

New target development: ONE-BT-1.

New development morphism: FUN-COMP-to-ONE-BT.
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Theory Translation (MON to ONE-BT)

Name: MON-to-ONE-BT.

Source development: MON.

Target development: ONE-BT.

Base type mapping:

1. M 7→ S → S .

Constant mapping:

1. ·(M×M)→M 7→ ◦((S→S)×(S→S))→(S→S).
2. eM 7→ idS→S .

This translation is normal and thus is a development
morphism, in part, by Thm15 and Thm16 of ONE-BT-1.
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Group Transportation (Transport of Def1 to ONE-BT-1)

Name: submonoids-via-MON-to-ONE-BT.

Source development: MON-1.

Target development: ONE-BT-1.

Development morphism: MON-to-ONE-BT.

Definitions and theorems:

Def1: submonoid{M}→o =
λ s : {M} . s 6= ∅{M} ∧ (·�s×s ↓ (s × s)→ s) ∧ e ∈ s

(submonoid).
Thm4: ∀ s : {M} . submonoid s ⇒ MONOID(s, ·�s×s , e)

(submonoids are monoids).
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Transported definitions and theorems:

Def5 (Def1-via-MON-to-ONE-BT):
trans-monoid{S→S}→o =
λ s : {S → S} .
s 6= ∅{S→S} ∧ (◦�s×s ↓ (s × s)→ s) ∧ idS→S ∈ s

(transformation monoid).
Thm17 (Thm4-via-MON-to-ONE-BT):
∀ s : {S → S} .

trans-monoid s ⇒ MONOID(s, ◦�s×s , idS→S)
(transformation monoids are monoids).

New target development: ONE-BT-2.

New development morphism: MON-1-to-ONE-BT-2.
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Development Graph for Monoid Theory
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Other Topics

Here are the other topics that are components of the development
graph for monoid theory:

1. Commutative monoids.

2. Monoid actions.

3. Monoid homomorphisms.

4. Monoids over real number arithmetic.

5. Monoid theory applied to strings.
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Part 3

Final Remarks
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Related Work: IMPS

IMPS proof assistant [FGT93] was developed by W. M.
Farmer, J. D. Guttman, and F. J. Thayer at MITRE
1990–1993.

Introduced three major innovations:

1. Proofs are supported by various kinds of computation.
2. The IMPS logic, LUTINS, is a version of Church’s type

theory that admits undefined expressions.
3. Mathematical knowledge is organized using the little

theories method.

The design of Alonzo is heavily influenced by IMPS.

Alonzo is simpler than LUTINS.

Alonzo employs many more notational definitions than IMPS.

IMPS uses sorts (types and subtypes) instead of quasitypes.
I But AlonzoS does use sorts.
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Other Related Work

Proof assistants and logical frameworks using theory graphs:
Ergo, Isabelle, LF, MMT, PVS.

Software specification and development systems using theory
graphs: ASL, CASL, EHDM, Hets, IOTA, KIDS, OBJ,
Specware.

Proof assistants based on Church’s type theory: HOL, HOL
Light, Isabelle/HOL, ProofPower, PVS, TPS.

Proof assistants and programming languages based on
dependent type theory: Agda, Automath, Coq, Epigram, F∗,
Idris, Lean, Nuprl.
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Conclusion

1. The little theories method is an effective method for
organizing mathematics so that:
I Similar structures can be formally connected.
I Redundancy can be systematically reduced.
I Information can flow between related contexts.

2. Alonzo is a logic well-suited for expressing and reasoning
about mathematical ideas because it:
I Has sufficient expressivity, both theoretical and practical.
I Is designed for reasoning about mathematical structures.
I Employs many notational definitions and conventions.
I Admits partial functions and undefined expressions.
I Is equipped with mathematical knowledge modules.

3. The little theories method using Alonzo requires minimal
software support — just LaTeX macros and environments.

Thank you!
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