NatFoM 2023 and LFPNML 2023

Little Theories

A Method for Organizing Mathematical Knowledge Illustrated Using Alonzo, a Practice-Oriented Version of Simple Type Theory

William M. Farmer

wmfarmer@mcmaster.ca

Department of Computing and Software McMaster University

7 September 2023

Outline

- 1. Background
 - a. Philosophy.
 - b. Alonzo.
 - c. Little theories method.
- 2. A formalization of monoid theory in Alonzo.
- 3. Final remarks.

The full formalization is presented in the forthcoming paper Monoid Theory in Alonzo [FZ23].

Part 1 Background: Philosophy

What is Mathematics?

- Mathematics is a process for understanding the mathematical aspects of the world.
- Here is how it works:
 - 1. A mathematical model consisting of objects, concepts, and facts is created to describe a mathematical phenomenon exhibited in the world.
 - 2. The model is explored in various ways to discover new objects, concepts, and facts related to the model.
 - 3. This enriched model then provides a deeper understanding of the mathematical phenomenon being modeled.
- Example: A computer internet modeled as a bipartite graph of hosts and physical networks.
- The building blocks for mathematical models are mathematical structures.

What is a Mathematical Structure?

- A first-order mathematical structure is a nonempty set D of values plus a set of distinguished elements, functions, and relations over D. Example: (N, 0, +, ≤).
- A general mathematical structure (structure for short) is a pair S = (D, A) where:
 - 1. \mathcal{D} is a nonempty finite set of base domains that are nonempty sets of values.
 - 2. \mathcal{A} is a set of distinguished values that are members of the domains in $\{\mathbb{B}\} \cup \mathcal{D}$ or domains constructed from these domains by the function space, power set, Cartesian product, and Kleene star operations. $\mathbb{B} = \{T, F\}$.
- Example: A monoid ({m}, {·, e}), where m is a nonempty set, · : (m × m) → m is an associative function, and e ∈ m is an identity element with respect to ·, is a structure.

What is Mathematical Knowledge?

- Mathematical knowledge is knowledge about the mathematics process, that is, knowledge about the creation and exploration of mathematical models.
- Since structures are the building blocks of mathematical models, the core of mathematical knowledge is knowledge about structures, their components, and their relationships with each other.
- Formal mathematical knowledge is mathematical knowledge expressed in a formal logic.

What is a Formal Logic?

- We define a formal logic as a family of formal languages with:
 - 1. A precise common syntax.
 - 2. A precise common semantics with a notion of logical consequence.
 - 3. A formal proof system for proving that a statement is a logical consequence of a set of statements.
- Examples: first-order logic, set theory, simple type theory, dependent type theory.

Part 1 Background: Alonzo

Formal Mathematics for the Masses

- The 50-year-old campaign to transform traditional mathematical practice into a formal discipline has been both a great success and a great failure.
- At NatFoM 2021 I have proposed an alternative approach to formal mathematics that:
 - 1. Is fully formal except proofs are written in a traditional (informal) style.
 - 2. Emphasizes the communication of mathematical ideas instead of the formal certification of mathematical results.
- First step: Develop a formal logic suitable for practical use with or without software support.
- First step is done: We have developed a logic called Alonzo and presented it in a textbook Simple Type Theory [Fa23].
- Next steps: Demonstrate this alternative approach using Alonzo and develop software to support it.

×

1/8

Computer Science Foundations and Applied Logic

William M. Farmer

Simple Type Theory

A Practical Logic for Expressing and Reasoning About Mathematical Ideas

🕲 Birkhäuser

https://link.springer.com/book/10.1007/978-3-031-21112-6

Alonzo: Overview

- Alonzo is a version of simple type theory [Fa08] that is based on Church's type theory (CTT) [Ch40].
- Has a simple syntax with two kinds of notation.
- Admits partial functions and undefined expressions.
- Employs two semantics, one for math and one for logic.
- Has a simple and elegant proof system derived from Peter Andrews' proof system for Q_0 [An02].
- Equipped with theories and theory morphisms, the tools needed for building libraries of mathematical knowledge.

Alonzo: Syntax

- Alonzo has two kinds of syntactic entities:
 - 1. Types that denote nonempty sets of values.
 - 2. Expressions that either denote values (when they are defined) or denote nothing (when they are undefined).
- There are two notations for types and expressions:
 - 1. A formal notation, an "internal" syntax for machines.
 - 2. A compact notation, an "external" syntax for humans that resembles the notation found in mathematical practice.

Alonzo: Types

- A type of Alonzo (denoted by α, β,...) is a string of symbols defined inductively by:
 - T1. Type of truth values: BoolTy is a type.
 - T2. Base type: BaseTy(a) is a type where a is any base type symbol.
 - T3. Function type: FunTy(α, β) is a type.
 - T4. Product type: $\operatorname{ProdTy}(\alpha, \beta)$ is a type.
- A type is presented in the formal notation when it is written as a string according to this definition.

Alonzo: Expressions

- An expression of type α of Alonzo (denoted by A_α, B_α,...) is a string of symbols defined inductively by:
 - E1. Variable: $Var(\mathbf{x}, \alpha)$ is an expression of type α where \mathbf{x} is any variable symbol.
 - E2. Constant: Con(\mathbf{c}, α) is an expression of type α where \mathbf{c} is any constant symbol.
 - E3. Equality: $Eq(A_{\alpha}, B_{\alpha})$ is an expression of type BoolTy.
 - E4. Function application: FunApp($\mathbf{F}_{\alpha \to \beta}, \mathbf{A}_{\alpha}$) is an expression of type β .
 - E5. Function abstraction: FunAbs(Var(\mathbf{x}, α), \mathbf{B}_{β}) is an expression of type FunTy(α, β).
 - E6. Definite description: DefDes(Var(\mathbf{x}, α), $\mathbf{A}_{\text{BoolTy}}$) is an expression of type α where $\alpha \neq$ BoolTy.
 - E7. Ordered pair: OrdPair($\mathbf{A}_{\alpha}, \mathbf{B}_{\beta}$) is an expression of type ProdTy(α, β).
- An expression is presented in the formal notation when it is written as a string according to this definition.

Alonzo: Compact Notation

- The compact notation for types and expressions is introduced in Simple Type Theory [Fa23] by:
 - 131 notational definitions.
 - 13 notational conventions.
- A notational definition, with the form *A* stands for *B*, is for:
 - Introducing a standard mathematical notation.
 - Defining a useful operator, binder, or abbreviation.
 - Defining a notation in which a variable symbol is bound to a set-valued expression (called quasitype) instead of to a type.
- A notational convention is for simplifying notation, e.g., by:
 - Dropping matching parentheses when meaning is not lost.
 - Dropping types from variables and constants when meaning is not lost.
 - Condensing blocks of quantifiers.

Compact Notation for Types and Expressions

• Notational definitions for types:

0	stands for	BoolTy.
а	stands for	BaseTy(a).
$(\alpha \rightarrow \beta)$	stands for	FunTy (α, β) .
$(\alpha \times \beta)$	stands for	$ProdTy(\alpha,\beta).$

• Notational definitions for expressions:

$$\begin{array}{lll} ({\bf x}:\alpha) & \text{stands for} & \text{Var}({\bf x},\alpha). \\ {\bf c}_{\alpha} & \text{stands for} & \text{Con}({\bf c},\alpha). \\ ({\bf A}_{\alpha}={\bf B}_{\alpha}) & \text{stands for} & \text{Eq}({\bf A}_{\alpha},{\bf B}_{\alpha}). \\ ({\bf F}_{\alpha\to\beta}\,{\bf A}_{\alpha}) & \text{stands for} & \text{FunApp}({\bf F}_{\alpha\to\beta},{\bf A}_{\alpha}). \\ (\lambda\,{\bf x}:\alpha\,\cdot\,{\bf B}_{\beta}) & \text{stands for} & \text{FunAbs}(\text{Var}({\bf x},\alpha),{\bf B}_{\beta}). \\ (I\,{\bf x}:\alpha\,\cdot\,{\bf A}_{o}) & \text{stands for} & \text{DefDes}(\text{Var}({\bf x},\alpha),{\bf A}_{o}). \\ ({\bf A}_{\alpha},{\bf B}_{\beta}) & \text{stands for} & \text{OrdPair}({\bf A}_{\alpha},{\bf B}_{\beta}). \end{array}$$

Parametric Polymorphism

- Alonzo has no parametric polymorphism at the object level.
 - Alonzo does not have type variables.
 - All constants have a fixed type.
- Alonzo has parametric polymorphism at the meta level.
 - Parametric pseudoconstants are defined by notational definitions.
 - Facts about parametric pseudoconstants are proved in "little theories" and then transported to other contexts as needed.
- Alonzo is not a polymorphic logic, but it supports polymorphic reasoning!

Notational Definitions for Boolean Operators

T _o	stands for	$(\lambda x : o \cdot x) = (\lambda x : o \cdot x).$
Fo	stands for	$(\lambda x : o \cdot T_o) = (\lambda x : o \cdot x).$
$\wedge_{o ightarrow o ightarrow o}$	stands for	$\lambda x : o . \lambda y : o .$
		$(\lambda g: o o o o o$. $g \; T_o \; T_o) =$
		$(\lambda g: o ightarrow o ightarrow o . g imes y).$
$(A_o \wedge B_o)$	stands for	$\wedge_{o \to o \to o} \mathbf{A}_o \mathbf{B}_o.$
$\Rightarrow_{o \to o \to o}$	stands for	$\lambda x : o \cdot \lambda y : o \cdot x = (x \wedge y).$
$(A_{o} \Rightarrow B_{o})$	stands for	$\Rightarrow_{o \to o \to o} \mathbf{A}_o \mathbf{B}_o.$
$\neg_{o \rightarrow o}$	stands for	$\lambda x : o \cdot x = F_o.$
$(\neg \mathbf{A}_o)$	stands for	$\neg_{o \to o} \mathbf{A}_o.$
$\vee_{o \to o \to o}$	stands for	$\lambda x : o . \lambda y : o . \neg (\neg x \land \neg y).$
$(A_o ee B_o)$	stands for	$\vee_{o \to o \to o} \mathbf{A}_o \mathbf{B}_o.$
$if_{o \to \alpha \to \alpha \to \alpha}$	stands for	$\lambda b: o . \lambda x: \alpha . \lambda y: \alpha$.
		$\mathrm{I}z:\alpha.(b\Rightarrow z=x)\wedge(\neg b\Rightarrow z=y).$
$(A_{o}\mapstoB_{lpha}\midC_{lpha})$	stands for	$if_{\boldsymbol{o}\to\alpha\to\alpha\to\alpha}\mathbf{A}_{\boldsymbol{o}}\mathbf{B}_{\alpha}\mathbf{C}_{\alpha}.$

Notational Definitions for Binary Operators

$(A_lpha c B_lpha)$	stands for	$\mathbf{c}_{\alpha \to \alpha \to \beta} \mathbf{A}_{\alpha} \mathbf{B}_{\alpha} \text{ or } \mathbf{c}_{(\alpha \times \alpha) \to \beta} (\mathbf{A}_{\alpha}, \mathbf{B}_{\alpha}).$
$(A_{o} \Leftrightarrow B_{o})$	stands for	$\mathbf{A}_o = \mathbf{B}_o.$
$(A_lpha eq B_lpha)$	stands for	$ eg(\mathbf{A}_{lpha}=\mathbf{B}_{lpha}).$
$(A_lpha < B_lpha)$	stands for	$(\leq_{lpha ightarrow lpha ightarrow {\sf A}_{lpha}{\sf B}_{lpha})\wedge ({\sf A}_{lpha} eq {\sf B}_{lpha}).$
$(A_lpha > B_lpha)$	stands for	$B_{lpha} < A_{lpha}.$
$(A_lpha \geq B_lpha)$	stands for	$B_{lpha} \leq A_{lpha}.$
$(A_lpha = B_lpha = C_lpha)$	stands for	$(A_lpha=B_lpha)\wedge(B_lpha=C_lpha).$
$(A_lpha \ c \ B_lpha \ d \ C_lpha)$	stands for	$(A_{lpha} c B_{lpha}) \wedge (B_{lpha} d C_{lpha}).$

Notational Definitions for Quantifiers

$(\forall \mathbf{x} : \alpha . \mathbf{A}_o)$	stands for	$(\lambda x : \alpha . T_o) = (\lambda \mathbf{x} : \alpha . \mathbf{A}_o).$
$(\exists \mathbf{x} : \alpha . \mathbf{A}_o)$	stands for	$\neg (\forall \mathbf{x} : \alpha . \neg \mathbf{A}_o).$
$(\exists ! \mathbf{x} : \alpha \ . \ \mathbf{A}_o)$	stands for	$\exists y : \alpha . (\lambda \mathbf{x} : \alpha . \mathbf{A}_o) = (\lambda \mathbf{x} : \alpha . \mathbf{x} = y)$
		where y is not free in $(\lambda \mathbf{x} : \alpha \cdot \mathbf{A}_o)$.

Notational Definitions for Definedness

\perp_o	stands for	F _o .
\perp_{α}	stands for	I $x : \alpha . x \neq x$ where $\alpha \neq o$.
$\Delta_{lpha ightarroweta}$	stands for	$\lambda x : \alpha \perp_{\beta} \text{ where } \beta \neq o.$
$(\mathbf{A}_{lpha}\downarrow)$	stands for	$\mathbf{A}_{\alpha} = \mathbf{A}_{\alpha}.$
$(A_{lpha}\uparrow)$	stands for	$\neg (\mathbf{A}_{\alpha} \downarrow).$
$(\mathbf{A}_{lpha}\simeq\mathbf{B}_{lpha})$	stands for	$(\mathbf{A}_{\alpha} \downarrow \lor \mathbf{B}_{\alpha} \downarrow) \Rightarrow \mathbf{A}_{\alpha} = \mathbf{B}_{\alpha}.$
$(A_{lpha} eq B_{lpha})$	stands for	$ eg(\mathbf{A}_{lpha} \simeq \mathbf{B}_{lpha}).$

Alonzo: Semantics

- In Henkin's general models semantics [He50] for CTT, function domains do not need to contain all possible functions.
- Alonzo's semantics is a modified form of the general models semantics that admits undefined expressions in accordance with the traditional approach to undefinedness [Fa04].
 - An undefined expression denotes no value at all.
 - A function domain contains both partial and total functions.
- Alonzo has effectively two semantics:
 - 1. Semantics of math. practice based on standard models for which there is no sound and complete proof system.
 - 2. Semantics of logical practice based on general models for which there is a sound and complete proof system.

Traditional Approach to Undefinedness

- The traditional approach to undefinedness, which is widely practiced in mathematics, is based on three principles:
 - 1. Atomic expressions (i.e., variables and constants) are always defined.
 - 2. Compound expressions may be undefined.
 - A function application f(a) is undefined if f is undefined, a is undefined, or a ∉ dom(f).
 - A definite description I x ∈ S . E is undefined if there is not exactly one a ∈ S for which E is true.
 - 3. Formulas are always true or false and hence defined.
 - So, by convention, a predicate application p(a) = F if p is undefined, a is undefined, or a ∉ dom(p).
- There are two kinds of equality:
 - 1. Equality: a = b if a and b are defined and equal.
 - 2. Quasi-equality: $a \simeq b$ if a = b or a and b are undefined.

Benefits of the Traditional Approach

• Meaningful statements can involve undefined expressions.

$$\forall x \in \mathbb{R} : 0 \le x \Rightarrow (\sqrt{x})^2 = x. \\ 0 \le -2 \Rightarrow (\sqrt{-2})^2 = -2.$$

• Function domains can be implicit.

$$k(x) \simeq \frac{1}{x} + \frac{1}{x-1}.$$
$$\left(\frac{f}{g}\right)(x) \simeq \frac{f(x)}{g(x)}.$$

• Definedness assumptions can be implicit, and as a result, expressions involving undefinedness can be very concise.

$$\forall x, y, z \in \mathbb{R} : \frac{x}{y} = z \Rightarrow x = y * z.$$

• Values can be defined implicitly using definite description. $\sqrt{x} \simeq I y \in \mathbb{R} \ . \ 0 \le y \land y^2 = x.$

Calculus Examples from [Fa23]

• Def10:
$$\lim_{(R \to R) \to R \to R} =$$

 $\lambda f : R \to R . \lambda a : R . Ib : R .$
 $(\forall e : R . 0 < e \Rightarrow$
 $(\exists d : R . 0 < d \land$
 $(\forall x : R . 0 < |x - a| < d \Rightarrow$
 $|f x - b| < e)))$ (limit of a function).
• Def14: cont-at_{(R \to R) \to R \to o} =
 $\lambda f : R \to R . \lambda a : R . \lim_{x \to a} f x = f a$
(continuous at a point).
• Thm27: $\forall f, g : R \to R, a, b : R .$
(cont-on-closed-int $f a b \land g = \lambda x : R . \int_a^x (f s) ds) \Rightarrow$
 $((\forall x : R . a < x < b \Rightarrow deriv-at g x = f x) \land$
right-deriv-at $g a = f a \land$
left-deriv-at $g b = f b$)
(fundamental theorem of calculus).

Part 1 Background: Little Theories Method

Languages

- A language (or signature) of Alonzo is a pair L = (B, C) where:
 - 1. \mathcal{B} is a finite set of base types.
 - 2. C is a set of constants.
- The base types and constants represent the base domains and distinguished values of a structure, respectively.
- A language specifies a set of expressions.

Theories

- A theory of Alonzo is a pair T = (L, Γ) where L is a language and Γ is a set of sentences of L (called the axioms of T).
- A theory specifies the set of structures defined by:
 - 1. The standard models of T.
 - 2. The general models of T.

Developments

- A development of Alonzo is a pair D = (T,Ξ) where T is a theory and Ξ is a sequence of definitions and theorems in T.
 - T is the bottom theory of D.
 - T plus the definitions in Ξ is the top theory of D.
- D is said to be a development of T.
 - (T, []) is the trivial development of T.
 - ▶ We identity *T* with its trivial development.

Theory Morphisms

- Let T_1 and T_2 be theories of Alonzo.
- A theory morphism Φ from T₁ to T₂ is a mapping of the expressions of T₁ to the expressions of T₂ such that:
 - 1. Base types are mapped to types and quasitypes.
 - 2. Constants are mapped to expressions.
 - 3. Valid sentences are mapped to valid sentences.
- The image of T_1 in T_2 under Φ is an instance of T_1 .

Development Morphisms

- Let D_1 and D_2 be developments of Alonzo.
- A development morphism Φ from D₁ to D₂ is, roughly speaking, a theory morphism from the top theory of D₁ to the top theory of D₂.
- A defined constant of D_1 can be mapped in three ways:
 - 1. Explicitly to a constant of D_2 .
 - 2. Explicitly to a nonconstant of D_2 .
 - 3. Implicitly to an expression of D_2 .
- The image of D_1 under Φ in D_2 is an instance of D_1 .
- The definitions and theorems of D_1 can be transported to D_2 via a development morphism from D_1 to D_2 .
 - That is, the definitions and theorems of D₁ can be transported to all instances of D₁.

Theory and Development Graphs

- A theory graph [KRZ10] is a directed graph whose nodes are theories and whose edges are theory morphisms.
- A development graph is a directed graph whose nodes are developments and whose edges are development morphisms.

Little Theories Method

- The little theories method [FGT92] is an attractive and powerful method for organizing mathematical knowledge:
 - 1. A body of mathematical knowledge is represented as a development graph G.
 - 2. Each mathematical topic is developed in a development D of the "little theory" T in G that has the most convenient level of abstraction and the most convenient vocabulary.
 - 3. The definitions and theorems produced in *D* are transported, as needed, from *D* to other, usually more concrete, developments in *G* via the development morphisms in *G*.
- Provides a strong form of polymorphism since the theorems of a development hold in all instances of the development.
- The little theories method unleashes the power of the axiomatic method!

Alonzo is Well Suited for the Little Theories Method

- $1. \ \mbox{Alonzo}$ is designed for reasoning about structures.
 - Base types represent the base domains of a structure.
 - Constants represent the distinguished values of a structure.
 - Alonzo has types for function spaces α → β, Cartesian products α × β, and power sets {α}.
 - Alonzo has quasitypes for infinite lists $\langle \alpha \rangle$ and finite lists $[\alpha]$.
- 2. Alonzo admits categorical theories (in the standard sense).
 - Alonzo has higher-order quantification.
- 3. Development morphisms can map base types to quasitypes.
 - Alonzo has notational definitions and conventions to enable quasitypes to be treated like types.
 - Alonzo can directly represent the partial functions that arise.
- 4. Alonzo is equipped with mathematical knowledge modules for constructing developments and development morphisms.

Part 2

A Formalization of Monoid Theory in Alonzo

Monoid Theory

- A monoid is a structure $(\{m\}, \{\cdot, e\})$ or (m, \cdot, e) where:
 - 1. m is a nonempty set of values.
 - 2. $\cdot : (m \times m) \rightarrow m$ is an associative function.
 - 3. $e \in m$ is an identity element with respect to \cdot .
- Mathematics and computing are replete with examples of monoids such as (N, +, 0), (N, *, 1), and (Σ*, ++, ε).
- Monoid theory is the set of the concepts, properties, and facts about monoids.
 - Lacks the rich structure of group theory.
 - But has enough structure to adequately illustrate the little theories method.
- We have formalized monoid theory in Alonzo as a development graph using the little theories method.

Definition of a Monoid in Alonzo

- We need a way to say in Alonzo that a triple (M_{α}, F_{(α×α)→α}, E_α) denotes a monoid.
- So we introduce an abbreviation via a notational definition:

$$\begin{split} & \mathsf{MONOID}(\mathsf{M}_{\{\alpha\}}, \mathsf{F}_{(\alpha \times \alpha) \to \alpha}, \mathsf{E}_{\alpha}) \\ & \mathsf{stands for} \\ & \mathsf{M}_{\{\alpha\}} \downarrow \land \\ & \mathsf{M}_{\{\alpha\}} \neq \emptyset_{\{\alpha\}} \land \\ & \mathsf{F}_{(\alpha \times \alpha) \to \alpha} \downarrow (\mathsf{M}_{\{\alpha\}} \times \mathsf{M}_{\{\alpha\}}) \to \mathsf{M}_{\{\alpha\}} \land \\ & \mathsf{E}_{\alpha} \downarrow \mathsf{M}_{\{\alpha\}} \land \\ & \forall x, y, z : \mathsf{M}_{\{\alpha\}} . \\ & \mathsf{F}_{(\alpha \times \alpha) \to \alpha} (x, \mathsf{F}_{(\alpha \times \alpha) \to \alpha} (y, z)) = \mathsf{F}_{(\alpha \times \alpha) \to \alpha} (\mathsf{F}_{(\alpha \times \alpha) \to \alpha} (x, y), z) \land \\ & \forall x : \mathsf{M}_{\{\alpha\}} \cdot \mathsf{F}_{(\alpha \times \alpha) \to \alpha} (\mathsf{E}_{\alpha}, x) = \mathsf{F}_{(\alpha \times \alpha) \to \alpha} (x, \mathsf{E}_{\alpha}) = x. \end{split}$$

• Notice that $\mathbf{M}_{\{\alpha\}}$ is a quasitype within α .

Application of the Little Theories Method

• Let $T = (L, \Gamma)$ be a theory of Alonzo. We can show that $(\mathbf{M}_{\{\alpha\}}, \mathbf{F}_{(\alpha \times \alpha) \to \alpha}, \mathbf{E}_{\alpha})$ denotes a monoid in T by proving

 $T \vDash \mathsf{MONOID}(\mathbf{M}_{\{\alpha\}}, \mathbf{F}_{(\alpha \times \alpha) \to \alpha}, \mathbf{E}_{\alpha}).$

- We may need general definitions and theorems about monoids to prove properties in *T* about this triple.
- It would be extremely inefficient to state these definitions and prove these theorems in *T*.
- Instead we should develop a little theory $T_{\rm mon}$ of monoids.
- The definitions and theorems of monoids can be introduced in a development D_{mon} of T_{mon} in a universal abstract form.
- Then these definitions and theorems can be transported to a development D via a development morphism from D_{mon} to D.

Theory Definition (Monoids)

Name: MON.

Base types: M.

Constants: $\cdot_{(M \times M) \to M}$, e_M .

Axioms:

1.
$$\forall x, y, z : M . x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 (· is associative).
2. $\forall x : M . e \cdot x = x \cdot e = x$
(e is an identity element with respect to ·).

Development Definition (Monoids 1)

Name: MON-1.

Bottom theory: MON.

Definitions and theorems:

Thm1: MONOID($U_{\{M\}}, \cdot_{(M \times M) \to M}, e_M$) (models of MON define monoids). Thm2: TOTAL(\cdot) $(\cdot \text{ is total}).$ Thm3: $\forall x : M . (\forall y : M . x \cdot y = y \cdot x = y) \Rightarrow x = e$ (uniqueness of identity element). Def1: submonoid $_{\{M\} \rightarrow o} =$ $\lambda s : \{M\} . s \neq \emptyset_{\{M\}} \land (\cdot \restriction_{s \times s} \downarrow (s \times s) \rightarrow s) \land e \in s$ (submonoid). Thm4: $\forall s : \{M\}$. submonoid $s \Rightarrow \text{MONOID}(s, \cdot |_{s \times s}, e)$ (submonoids are monoids). Thm5: submonoid {e} (minimum submonoid). (maximum submonoid). Thm6: submonoid $U_{\{M\}}$

Def2:
$$\cdot_{(M \times M) \to M}^{\text{op}} = \lambda p : M \times M . (\operatorname{snd} p) \cdot (\operatorname{fst} p)$$

(opposite of \cdot).
Thm7: $\forall x, y, z : M . x \cdot^{\operatorname{op}} (y \cdot^{\operatorname{op}} z) = (x \cdot^{\operatorname{op}} y) \cdot^{\operatorname{op}} z$
($\cdot^{\operatorname{op}}$ is associative).
Thm8: $\forall x : M . e \cdot^{\operatorname{op}} x = x \cdot^{\operatorname{op}} e = x$
(e is an identity element with respect to $\cdot^{\operatorname{op}}$).
Def3: $\odot(\{M\} \times \{M\}) \to \{M\} =$
set-op($(M \times M) \to M$) $\to ((\{M\} \times \{M\}) \to \{M\})$ (set product).
Def4: $E_{\{M\}} = \{e_M\}$ (set identity element).
Thm9: $\forall x, y, z : \{M\} . x \odot (y \odot z) = (x \odot y) \odot z$
(\odot is associative).
Thm10: $\forall x : \{M\} . E \odot x = x \odot E = x$
(E is an identity element with respect to \odot).
• set-op($(\alpha \times \beta) \to \gamma . \lambda p : \{\alpha\} \times \{\beta\})$.
stands for
 $\lambda f : (\alpha \times \beta) \to \gamma . \lambda p : \{\alpha\} \times \{\beta\}$.
 $\{z : \gamma \mid \exists x : \operatorname{fst} p, y : \operatorname{snd} p . z = f(x, y)\}$.

W. M. Farmer

Opposite Monoids

- (M, ·^{op}_{(M×M)→M}, e) is a monoid in MON-1 called the opposite monoid of (M, ·_{(M×M)→M}, e_M).
- We can prove this directly using Thm7 and Thm8.
- A better approach is to construct a development morphism from MON to MON-1 that maps

$$(M, \cdot_{(M \times M) \to M}, \mathbf{e}_M)$$

to

$$(M, \cdot_{(M \times M) \to M}^{\mathrm{op}}, \mathsf{e}).$$

• This establishes an information conduit for transporting information about monoids to corresponding information about their opposite monoids.

Development Translation (MON to Opposite Monoid)

Name: MON-to-opposite-monoid.

Source development: MON.

Target development: MON-1.

Base type mapping:

1. $M \mapsto M$.

Constant mapping:

1.
$$(M \times M) \rightarrow M \mapsto (M \times M) \rightarrow M$$

2. $e_M \mapsto e_M$.

- This translation is normal and thus is a development morphism by Thm7 and Thm8 of MON-1.
- It can be used to transport a theorem to its dual form.
- Example: $x = y \Rightarrow x \cdot z = y \cdot z \quad \mapsto \quad x = y \Rightarrow z \cdot x = z \cdot y.$

Theorem Transportation (Transport of Thm1 to MON-1)

Name: monoid-via-MON-to-opposite-monoid.

Source development: MON.

Target development: MON-1.

Development morphism: MON-to-opposite-monoid.

Theorem:

Thm1: MONOID($U_{\{M\}}, \cdot_{(M \times M) \to M}, e_M$) (models of MON define monoids).

Transported theorem:

Thm11 (Thm1-via-MON-to-opposite-monoid): $MONOID(U_{\{M\}}, \stackrel{\text{op}}{(M \times M) \to M}, e_M)$ (opposite monoids are monoids).

New target development: MON-2.

Set Monoids

- ({M}, ⊙_{({M}×{M})→{M}}, E_{{M}}) is a monoid in MON-1 called the set monoid of (M, ·(M×M)→M, e_M).
- We will prove this by constructing a development morphism from MON to MON-2 that maps

$$(M, \cdot_{(M \times M) \to M}, \mathsf{e}_M)$$

to

$$(\{M\}, \odot_{(\{M\}\times\{M\})\to\{M\}}, \mathsf{E}_{\{M\}}).$$

Development Translation (MON to Set Monoid)

Name: MON-to-set-monoid.

Source development: MON.

Target development: MON-2.

Base type mapping:

1. $M \mapsto \{M\}$.

Constant mapping:

1.
$$(M \times M) \rightarrow M \mapsto \bigodot (\{M\} \times \{M\}) \rightarrow \{M\}$$
.
2. $e_M \mapsto E_{\{M\}}$.

• This translation is normal and thus is a morphism by Thm9 and Thm10 of MON-2.

Theorem Transportation (Transport of Thm1 to MON-2)

Name: monoid-via-MON-to-set-monoid.

Source development: MON.

Target development: MON-2.

Development morphism: MON-to-set-monoid.

Theorem:

Thm1: MONOID($U_{\{M\}}, \cdot_{(M \times M) \to M}, e_M$) (models of MON define monoids).

Transported theorem:

```
Thm12 (Thm1-via-MON-to-set-monoid):

MONOID(U_{\{M\}}, \odot_{(\{M\} \times \{M\}) \to \{M\}}, E_{\{M\}})
(set monoids are monoids).
```

New target development: MON-3.

Development Graph for Monoid Theory

Transformation Monoids

- Let s be a nonempty set and (f, \circ, id) be a triple where:
 - 1. f is a set of (partial or total) functions from s to s.
 - 2. $\circ: ((s \rightarrow s) \times (s \rightarrow s)) \rightarrow (s \rightarrow s)$ is function composition.
 - 3. id : $s \rightarrow s$ is the identity function.
- (f, \circ, id) a transformation monoid on s if both:
 - 1. f is closed under \circ .
 - 2. id $\in f$.
- Theorem. Every transformation monoid is a monoid.
- How should we formalize this theorem?
- First, we define a theory T with one base type representing s.
- Second, we develop T so that we can state and prove the theorem.

Theory Definition (One Base Type) Name: ONE-BT. Base types: *S*. Constants: Axioms:

 $\mathsf{id}_{\alpha \to \alpha}$

stands for

 $\lambda x : \alpha . x$

$$\circ_{((\alpha \to \beta) \times (\beta \to \gamma)) \to (\alpha \to \gamma)}$$

stands for
 $\lambda p : (\alpha \to \beta) \times (\beta \to \gamma) . \lambda x : \alpha . (\text{snd } p) ((\text{fst } p) x).$

Theory Development (One Base Type 1) Name: ONE-BT-1 Bottom theory: ONE-BT Definitions and theorems Thm13: $\forall f, g, h : S \rightarrow S$. $f \circ (g \circ h) = (f \circ g) \circ h$ $(\circ is associative).$ Thm14: $\forall f : S \rightarrow S$. $id_{S \rightarrow S} \circ f = f \circ id_{S \rightarrow S} = f$ $(id_{S \rightarrow S} is an identity element with respect to <math>\circ$). Def5: trans-monoid $\{S \rightarrow S\} \rightarrow o =$ $\lambda s: \{S \to S\}$. $s \neq \emptyset_{\{S \to S\}} \land (\circ \upharpoonright_{s \times s} \downarrow (s \times s) \to s) \land \mathsf{id}_{S \to S} \in s$ (transformation monoid). Thm15: $\forall s : \{S \rightarrow S\}$. trans-monoid $s \Rightarrow MONOID(s, \circ \upharpoonright_{s \times s}, id_{s \to s})$ (transformation monoids are monoids).

This is the wrong approach!

Theory Definition (Function Composition) Name: FUN-COMP. Base types: A, B, C, D. Constants: Axioms:

Development Definition (Function Composition 1)

Name: FUN-COMP-1.

Bottom theory: FUN-COMP.

Definitions and theorem:

Thm13: $\forall f : A \rightarrow B, g : B \rightarrow C, h : C \rightarrow D$. $f \circ (g \circ h) = (f \circ g) \circ h$ (\circ is associative). Thm14: $\forall f : A \rightarrow B$. $id_{A \rightarrow A} \circ f = f \circ id_{B \rightarrow B} = f$ (identity functions are left and right identity elements). Theory Translation (FUN-COMP to ONE-BT)

Name: FUN-COMP-to-ONE-BT.

Source development: FUN-COMP.

Target development: ONE-BT.

Base type mapping:

- 1. $A \mapsto S$. 2. $B \mapsto S$. 3. $C \mapsto S$.
- **4**. $D \mapsto S$.

Constant mapping:

• This translation is a morphism since it is normal and FUN-COMP contains no constants or axioms.

Group Transportation (Thm13 and Thm14 to ONE-BT) Name:

function-composition-theorems-via-FUN-COMP-to-ONE-BT.

Source development: FUN-COMP-1.

Target development: ONE-BT.

Development morphism: FUN-COMP-to-ONE-BT.

Definitions and theorems:

Thm13: $\forall f : A \rightarrow B, g : B \rightarrow C, h : C \rightarrow D$. $f \circ (g \circ h) = (f \circ g) \circ h$ (\circ is associative). Thm14: $\forall f : A \rightarrow B$. $id_{A \rightarrow A} \circ f = f \circ id_{B \rightarrow B} = f$ (identity functions are left and right identity elements).

Transported definitions and theorems:

Thm15 (Thm13-via-FUN-COMP-to-ONE-BT): $\forall f, g, h : S \rightarrow S \ f \circ (g \circ h) = (f \circ g) \circ h$ (\circ is associative). Thm16 (Thm14-via-FUN-COMP-to-ONE-BT): $\forall f : S \rightarrow S \ id_{S \rightarrow S} \circ f = f \circ id_{S \rightarrow S} = f$ ($id_{S \rightarrow S}$ is an identity element with respect to \circ). New target development: ONE-BT-1.

New development morphism: FUN-COMP-to-ONE-BT.

Theory Translation (MON to ONE-BT)

Name: MON-to-ONE-BT.

Source development: MON.

Target development: ONE-BT.

Base type mapping:

1. $M \mapsto S \rightarrow S$.

Constant mapping:

1.
$$(M \times M) \to M \xrightarrow{\mapsto} \circ ((S \to S) \times (S \to S)) \to (S \to S)$$
.
2. $e_M \mapsto id_{S \to S}$.

• This translation is normal and thus is a development morphism, in part, by Thm15 and Thm16 of ONE-BT-1.

Group Transportation (Transport of Def1 to ONE-BT-1)

Name: submonoids-via-MON-to-ONE-BT.

Source development: MON-1.

Target development: ONE-BT-1.

Development morphism: MON-to-ONE-BT.

Definitions and theorems:

Def1: submonoid ${M} \rightarrow o =$ $\lambda s : {M} \cdot s \neq \emptyset_{{M}} \land (:_{s \times s} \downarrow (s \times s) \rightarrow s) \land e \in s$ (submonoid). Thm4: $\forall s : {M}$. submonoid $s \Rightarrow MONOID(s, :_{s \times s}, e)$

(submonoids are monoids).

Transported definitions and theorems:

$$\begin{array}{l} \text{Def5 (Def1-via-MON-to-ONE-BT):} \\ \text{trans-monoid}_{\{S \rightarrow S\} \rightarrow o} = \\ \lambda \, s : \{S \rightarrow S\} \, . \\ s \neq \emptyset_{\{S \rightarrow S\}} \wedge (\circ \upharpoonright_{s \times s} \downarrow (s \times s) \rightarrow s) \wedge \text{id}_{S \rightarrow S} \in s \\ & (\text{transformation monoid}). \end{array}$$

$$\begin{array}{l} \text{Thm17 (Thm4-via-MON-to-ONE-BT):} \\ \forall \, s : \{S \rightarrow S\} \, . \\ \text{trans-monoid} \, s \Rightarrow \text{MONOID}(s, \circ \upharpoonright_{s \times s}, \text{id}_{S \rightarrow S}) \\ & (\text{transformation monoids are monoids}). \end{array}$$

New target development: ONE-BT-2. **New development morphism:** MON-1-to-ONE-BT-2.

Development Graph for Monoid Theory

Other Topics

Here are the other topics that are components of the development graph for monoid theory:

- 1. Commutative monoids.
- 2. Monoid actions.
- 3. Monoid homomorphisms.
- 4. Monoids over real number arithmetic.
- 5. Monoid theory applied to strings.

Part 3 Final Remarks

Related Work: IMPS

- IMPS proof assistant [FGT93] was developed by W. M. Farmer, J. D. Guttman, and F. J. Thayer at MITRE 1990–1993.
- Introduced three major innovations:
 - 1. Proofs are supported by various kinds of computation.
 - 2. The IMPS logic, LUTINS, is a version of Church's type theory that admits undefined expressions.
 - 3. Mathematical knowledge is organized using the little theories method.
- The design of Alonzo is heavily influenced by IMPS.
- Alonzo is simpler than LUTINS.
- Alonzo employs many more notational definitions than IMPS.
- IMPS uses sorts (types and subtypes) instead of quasitypes.
 - But AlonzoS does use sorts.

Other Related Work

- Proof assistants and logical frameworks using theory graphs: Ergo, Isabelle, LF, MMT, PVS.
- Software specification and development systems using theory graphs: ASL, CASL, EHDM, Hets, IOTA, KIDS, OBJ, Specware.
- Proof assistants based on Church's type theory: HOL, HOL Light, Isabelle/HOL, ProofPower, PVS, TPS.
- Proof assistants and programming languages based on dependent type theory: Agda, Automath, Coq, Epigram, F*, Idris, Lean, Nuprl.

Conclusion

- 1. The little theories method is an effective method for organizing mathematics so that:
 - Similar structures can be formally connected.
 - Redundancy can be systematically reduced.
 - Information can flow between related contexts.
- 2. Alonzo is a logic well-suited for expressing and reasoning about mathematical ideas because it:
 - Has sufficient expressivity, both theoretical and practical.
 - Is designed for reasoning about mathematical structures.
 - Employs many notational definitions and conventions.
 - Admits partial functions and undefined expressions.
 - Is equipped with mathematical knowledge modules.
- The little theories method using Alonzo requires minimal software support — just LaTeX macros and environments.

Thank you!

References

- [An02] P. B. Andrews, An Introduction to Mathematical Logic and Type Theory: To Truth through Proof, Second Edition, Kluwer, 2002.
- [Ch40] A. Church, "A Formulation of the Simple Theory of Types", *Journal of Symbolic Logic*, 5:56–68, 1940.
- [Fa04] W. M. Farmer, "Formalizing Undefinedness Arising in Calculus", in: D. Basin et al., eds, Automated Reasoning, LNCS, 3097:475–489, 2004.
- [Fa08] W. M. Farmer, "The Seven Virtues of Simple Type Theory", Journal of Applied Logic, 6:267—286, 2008.
- [Fa23] W. M. Farmer, Simple Type Theory: A Practical Logic for Expressing and Reasoning about Mathematical Ideas, Birkhäuser/Springer, 2023.
- [FGT92] W. M. Farmer, J. D. Guttman, and F. J. Thayer, "Little theories", in: D. Kapur, ed., Automated Deduction — CADE-11, LNCS, 607:567–581, 1992.
- [FGT93] W. M. Farmer, J. D. Guttman, and F. J. Thayer, "IMPS: An Interactive Mathematical Proof System", *Journal of Automated Reasoning*, 11:213–248, 1993.
- [FZ23] W. M. Farmer and D. Y. Zvigelsky, "Monoid Theory in Alonzo: A Little Theories Formalization in Simple Type Theory", 2023.
- [KRZ10] M. Kohlhase, F. Rabe, and V. Zholudev, "Towards MKM in the Large: Modular Representation and Scalable Software Architecture. In S. Autexier et al., eds. Intelligent Computer Mathematics, LNCS, 6167:370–384, 2010.

[He50] L. Henkin, "Completeness in the theory of types", Journal of Symbolic Logic, 15:81–91, 1950.