Solving logical puzzles with ChatGPT

Adrian Groza

Department of Computer Science, Technical University of Cluj-Napoca, Romania

Machine Learning Alliance

The Romulan Star Empire: Supervised Learning
The Klingon Empire:
Unsupervised Learning
The Borg Collective:
All these successful villains speak the same language: Statistics
"Resistance Is Futile" (F-measure 0.99999)

The current war between Black Box Models and XAI

Reasoning speed:

Reasoning \&
Explainable AI
Slow (knowledge driven)
Fast (data driven)

Who is this?
Who was his predecessor?
Who was his predecesor's predecesor?

Computer science also differs from physics in that it is not actually a science. It does not study natural objects. Neither is it, as you might think, mathematics; although it does use mathematical reasoning pretty extensively. Rather, computer science is like engineering

Richard Feynman

LANGUAGE MODEL SIZES TO AUG/2022

(1) Can LLMs (ChatGPT, BARD) solve logic puzzles?
(2) Which are the types of logical faults? How many?
(3) Can LLMs translate into FOL?

Modelling Puzzles in First Order Logic

144 puzzles (12 puzzles $\times 12$ chapters)

Chapter 1 - Micro arithmetic puzzles

Puzzle 3. Logic equation 5×5

In this 5×5 logic equation you have to find unique integer values for the variables A, B, C, D, E - ranging from 1 to 5 - to make all statements true: (C)Brainzilla www.brainzilla.com)

$$
\begin{aligned}
& C=A+E \\
& E=B+2 \\
& (B * E+3 * E) \neq B \rightarrow A * A+D>E
\end{aligned}
$$

Chapter 2 - Strange numbers

Puzzle 14. Multiplication

How many solutions are for: A B C D E F $* 3=\mathrm{BCDEFA}$, where each digit is distinct? (puzzle from Math is fun - www.mathisfun.com Pierce (2020))

Chapter 3 - Practical puzzles

Puzzle 30. Golomb ruler

Define a ruler with $M=4$ marks (e.g. a, b, c, d) so that the distances between any two marks are different. Your ruler should be able to measure all the integer distances up to length $L=6$. There should be only one way of measuring an integer distance with your ruler.

Chapter 4 - Ladies and tigers

Puzzle 45. Ninth day: three rooms

One room contains a lady and the other two contain tigers. At most one of the three signs is true. The sign on the first room says: "A tiger is in this room". The sign on the second room says: "A lady is in this room". The sign on the third room says: "A tiger is in room 2". Which door to open in order to find the lady? Smullyan (2009)

Room $_{1}$
R tiger is in this room

Chapter 5 - Einstein or zebra puzzles

Puzzle 55. Perfect man

Susan's perfect man has black hair, brown eyes, and is tall and slim. Susan knows 4 men: Arthur, Bill, Charles and Dave. Only one of them has all the characteristics that Susan requires.

1. Arthur and Bill have the same eye colour.
2. Only one of the men has both black hair and brown eyes.
3. Bill and Charles have the same hair colour.
4. Only two of the men are both tall and slim.
5. Charles and Dave are of differing build.
6. Only two of the men are both tall and dark-haired.
7. Dave and Arthur are the same height.
8. Only three of the men are both slim and brown-eyed.

Who is Susan's perfect man? (taken from Clessa (1996))

Chapter 6 - Island of truth

Puzzle 61. We are both knaves

On the island of knights and knaves, knights always tell the truth, while knaves always lie. You are approached by two people. The first one says: "We are both knaves". What are they actually? (Smullyan (2011))

Chapter 7 - Love and marriage

Puzzle 81. Two single persons at the end of the row

Four married men and three unmarried men are seated in a row at random. What are the chances that the two men at the ends of the row will be single? (adapted from puzzle 470 from Dudeney (2016))

Chapter 8 - Grid puzzles

Puzzle 95. Fancy queens

I have placed a queen in one of the white squares of the board shown. Place 7 more queens in white squares so that no 2 of the 8 queens are in line horizontally, vertically, or diagonally (adapted from puzzle 113 from Kordemsky 1992).

Chapter 9 - Japanese puzzles, e.g. Killer Sudoku, Kakuro

Chapter 10 - Russian puzzles

Puzzle 119. A star

Can you place the integers from 1 through 12 in the circles of the six-pointed star so that the sum of the numbers in each of the six rows is 26 ? (puzzle 324 from Kordemsky (1992))

Chapter 11 - Polyomino puzzles

Puzzle 122. A simple polyomino

This puzzle uses one monomino, one domino, and two trominoes, for a total of nine squares. Assume that you cannot rotate the shapes. Group the four shapes in a 3×3 grid.

Chapter 12 - Self reference puzzles

Puzzle 133. Tricky messages

Which of the following statements are true?

1. The next two statements are false.
2. The last statement is false.
3. The next statement is false.
4. The first statement was false. (puzzle from Walicki (2016))

Puzzle 100. Self-counting sentence

You have to insert numbers in the blanks to make the following sentence true: In this sentence, the number of occurrences of 0 is ${ }_{-}$, of 1 is ${ }_{-}$, of 2 is ${ }_{-\rightarrow}$, of 3 is ${ }_{\rightarrow \rightarrow}$ of 4 is ${ }_{\rightarrow}$, of 5 is , of is __, , of 7 is $_{\ldots}$, of 8 is \ldots, and of 9 is . There are exactly two solutions. (puzzle created by Douglas Hofstadter Hofstadter (1985))

Dataset of experiments

100 puzzles, ChatGPT, BARD

Solution by ChatGPT

To solve the puzzle, we need to find two arrangements of the five cards $(3,1,5,7,9)$ in a row such that the number formed by the first pair multiplied by the number formed by the last pair, with the central number subtracted, will produce a number composed of repetitions of one figure. ${ }^{\text {Task understanding: correct }}$ Let's consider the possible pairs for the first and last numbers: ${ }^{\text {Solving strategy: Analysing all possibilities }}$

1. $(3,9)$: The product of 39 and 17 is 663 , but subtracting 5 would give us 658 , which does not have repetitions of a single figure.
2. (1,7): The product of 17 and 59 is 1003 , but subtracting
 have repetitions of a single figure.
3. $(5,9)$: The product of 59 and 37 is 2183 , and subtracting
 repetitions of the figure $6^{\text {Wrong claim. }}$. This arrangement satisfies the conditions of the puzzle. ${ }^{\text {Unjustified conclusion }}$
4. Now, let's consider the other possible pair $(9,5)$. The product of 95 and 37 is 3515 , but subtracting 7 would ${ }^{\text {Lack of commonsense: } 7 \text { is no longer the central number, but } 1}$ give us 3508 , which does not have repetitions of a single figure.

Therefore, the only valid arrangement is $(5,9,3,1,7)$, Unjustified claim where the number formed by the first pair (59) multiplied by the number formed by the last pair (37), ${ }^{\text {Inconsistency: the number is }} 17$ with the central number (3) subtracted, gives us the number 2176.

Inconsistency: GPT has already stated that the result should be repetitions of the same figure Hence, the solution to the puzzle is to arrange the eards as follows: 59-3-37. Inconsistency: figure 1 is missingWrong conclusion

Spoiler alert: Assessing performance

Answer	BARD	ChatGPT
Correct	5	7
Correct (but wrong justification)	13	2
Correct (with inconsistencies)	1	1
Correct (but unjustified)	-	6
Partial correct	-	1
Wrong (lack of task understanding)	69	72
Wrong (claiming no solution)	1	1
Wrong	11	2
Wrong (claiming not enough information)	-	3
Wrong and fuzzy	-	1
Wrong (no justification)	-	3
No solution only valid but inneficient algorithm	-	1
Admitting failure	-	1
Example (Solving strategies)		
- Analysing all possibilites		\bullet Step by step
- Backward reasoning		0 Backtracking
- Principle of inclusion-exclusion		0 Euclidian algorithm
- Trial and error		0 Heron formula
- Recursive approach		Assumption based

Quantifying logical faults

puzzle 1	Wrong	Wrong	20.36%
puzzle 2	Wrong	Correct	0.00%
puzzle 3	Wrong (said there is no solution)	Wrong	Wrong
puzzle 4	Wrong	Wrong	35.04%
puzzle 5	Wrong	Wrong	25.99%
puzzle 6	Wrong	Correct	25.02%
puzzle 7	Wrong (did not understand task)	Wrong	46.17%
puzzle 8	Wrong	Correct	0.00%
puzzle 9	Wrong	Wrong	34.31%
puzzle 10	Wrong (said there is no solution)	0.00%	
puzzle 11	Wrong (said there is no solution)	Wrong	26.16%
puzzle 12	Wrong	Wrong	26.41%
puzzle 13	Wrong (said there is no solution)	Wrong	9.61%
puzzle 14	Wrong	Wrong	37.57%
puzzle 15	Correct	Wrong	47.03%

$a \rightarrow b$
$b \rightarrow c$
$c \rightarrow d$
$d \rightarrow e$
$e \rightarrow$ conclusion
conclusion
How much hallucination?

- on average, 26.03% from the generated text is a logical fault
- the quantity of false text is larger
- 698 logical faults (average 7 fallacies/puzzle)

1	inconsistency	22.35\%	156
2	implication does not hold	16.76\%	117
3	wrong conclusion	11.46\%	80
4	unsupported claim	9.17\%	64
5	lack of commonsense	8.05\%	56
6	bad arithmetic	5.16\%	36
7	wrong assumption	3.72\%	26
8	unjustified claim	2.29\%	16
9	too strong assumption	2.01\%	14
10	unjustified contradiction	1.43\%	10
11	wrong justification	1.43\%	10
12	unsupported conclusion	1.29\%	9
13	lack of task understanding	1.00\%	7
14	wrong claim	1.00\%	7
15	false contradiction	0.86\%	6
16	lack of understanding	0.86\%	6
17	unjustified conclusion	0.86\%	6
18	unrelated justification	0.72\%	5
19	logical fault	0.57\%	4
20	bad justification	0.43\%	3
21	incomplete analyse	0.43\%	3
22	incomplete solution	0.43\%	3
23	missing task specification	0.43\%	3
24	wrong solution	0.43\%	3
25	fuzzy conclusion	0.29\%	2
26	lack of domain knowledge	0.29\%	2
27	language pattern	0.29\%	2
28	too large domain	0.29\%	2
29	grammar patttern	0.29\%	2
30	bad interpretation in the last step	0.14\%	1
31	bad strategy	0.14\%	1
32	bad topology	0.14\%	1
33	circular reasoning	0.14\%	1
34	correct but unjustified conclusion	0.14\%	1

35	correct but unsupported conclusion	0.14\%	1
36	false contradition	0.14\%	1
37	fuzzy answer	0.14\%	1
38	hallucination	0.14\%	1
39	identifying inconsistency and wrongly solving it	0.14\%	1
40	incomplete assignment	0.14\%	1
41	incomplete claim	0.14\%	1
42	incomplete conclusion	0.14\%	1
43	incomplete exploration of the search space	0.14\%	1
44	incomplete inference	0.14\%	1
45	incomplete justification	0.14\%	1
46	incomplete reasoning	0.14\%	1
47	incomplete search space	0.14\%	1
48	incomplete search space exploration	0.14\%	1
49	incomplete solution by stoping before reaching	0.14\%	1
50	inconsistency in the same sentence	0.14\%	1
51	irrelevant justification	0.14\%	1
52	loop	0.14\%	1
53	partial solution	0.14\%	1
54	the worlds collide	0.14\%	1
55	too restrictive domain	0.14\%	1
56	too weak assumption	0.14\%	1
57	unrelated claim	0.14\%	1
58	unsupported premise	0.14\%	1
59	using info from previous puzzles	0.14\%	1
60	wrong claim based on previous errors	0.14\%	1
61	wrong computation for favorable models	0.14\%	1
62	wrong conclusion puzzle cannot be solved	0.14\%	1
63	wrong modality	0.14\%	1
64	wrong premise	0.14\%	1
65	wrong search space evaluation	0.14\%	1
66	wrong strategy	0.14\%	1
67	wrong undeterminancy	0.14\%	1

Sample of correct puzzles

Puzzle 2. Logic equation

In this 4×4 logic equation you have to find unique integer values for the variables A, B, C, D - ranging from 1 to 4 - to make all the following statements true: $A+D=B+4$, $B+D=A+2$ (©)Brainzilla - www.brainzilla.com)

Puzzle 7. Dividing the legacy

A man left 100 dollars to be divided between his two sons Alfred and Benjamin. If onethird of Alfred's legacy was taken from one-fourth of Benjamin's, the remainder would be 11 dollars. What was the amount of each legacy? (puzzle 15 from (Dudeney, 2016))

Puzzle 87. Latin square

Albert is a scientist that wants to test four different drugs (called A, B, C, and D) on four volunteers. He decides that every volunteer has to be tested with a different drug each week, but no two volunteers are allowed the same drug at the same time.

Inconsistencies and lack of commonsense

Inconsistencies: (156, 22.35\%)
Lack of commonsense (56, 8.05\%)

Example (Letter to parents: SEND + MOST = MONEY)

So, we have found the best-ease seenario: SEND $=1529$, MOST $=6735$, MONEY $=$ $8264{ }^{\text {Implication does not hold Inconsistency: GPT already learned that MONEY has five digits }}$.

In the worst case scenario, you will receive $\$ 89,675$, and in the best case scenario, you will receive $\$ 8,264$. ${ }^{\text {Lack of commonsense }}$

Example (Asking for ages of family members)

Therefore, the age of each person is: Father (F): 18 years Mother (M): 54 years John (J): 3
 Lack of commonsense: a father of 18 and mother of 54 is rather exceptional.
Inconsistency: difference between father and mother (36) is not equal with the difference between john and mary (6) or ben and mary (3)

No justification

Puzzle 100. Self-counting sentence

You have to insert numbers in the blanks to make the following sentence true: In this sentence, the number of occurrences of 0 is ${ }_{-}$, of 1 is ${ }_{-}$, of 2 is ${ }_{-}$, of 3 is ${ }_{\rightarrow \rightarrow}$ of 4 is of 5 is of 6 is ${ }_{-}$, of 7 is ${ }_{-}$, of 8 is ${ }_{\rightarrow}$, and of 9 is .
There are exactly two solutions. (puzzle created by Douglas Hofstadter Hofstadter (1985))

Solution by ChatGPT

The sentence can be made true in the following two ways:
Solution 1: "In this sentence, the number of occurrences of 0 is 2 , of 1 is 2 , of 2 is 1 , of 3 is 1 , of 4 is 1 , of 5 is 1 , of 6 is 1 , of 7 is 1 , of 8 is 1 , and of 9 is 1 ." Unjustified conclusionWrong conclusion
Solution 2: "In this sentence, the number of oceurrences of 0 is 4 , of 1 is 1 , of 2 is 1 , of 3 is 1 , of 4 is 2 , of 5 is 1 , of 6 is 1 , of 7 is 1 , of 8 is 0 , and of 9 is 1 ." Unjustified conclusion Wrong conclusion

Lack of task understanding

Puzzle 89. Fancy queens

I have placed a queen in one of the white squares of the $8 x 8$ chessboard. The queen is placed on the position A2. Place 7 more queens in white squares so that no 2 of the 8 queens are in line horizontally, vertically, or diagonally (adapted from puzzle 113 from Kordemsky (1992)).

Solution by ChatGPT

Wrong
To solve this puzzle, you can place the remaining queens ${ }^{\text {Lack of task understanding: there is no queen on } \mathrm{A} 2}$ on the chessboard in such a way that no two queens threaten each other horizontally, vertically, or diagonally. Here's a configuration that satisfies these conditions: ${ }^{\text {Wrong conclusion }}$
Q .

```
. . Q . . . .
```

. . . $\mathrm{Q} .$.
. Q
. . Q . . .
. Q . .
In this configuration, each row, column, and diagonal contains only one queen, and no two queens threaten each other.

Solution by ChatGPT

Correct, but unsupported
Let's analyze the possibilities: If the sign on the first room is true, then a tiger is in that room. This means the sign on the second room must be false ${ }^{\text {Implication does not hold }}$, and the sign on the third room must be true Unsupported claim. However, this creates a contradiction because if the sign on the third room is true, then a tiger is in room 2, which means the sign on the second room should also be true ${ }^{\text {Implication does not hold (since it says a lady is in that }}$ reom) ${ }^{\text {Unrelated justification }}$. So this possibility is not valid.
If the sign on the first room is false, then a lady is in that room. This means the sign on the second room must be true ${ }^{\text {Implication does not hold }}$, and the sign on the third room must be false. This is a valid possibility because it satisfies the condition that at most one of the three signs is true.
Based on the valid pessibility ${ }^{\text {Wrong justification: }}$ possibility does imply necessity , we can determine that the tady is in the first room ${ }^{\text {Unsupported conclusion. Therefore, you should open the first door to find }}$ the lady.

Traces of the past

Puzzle 62. At least one of us is a knave

On the island of knights and knaves, knights always tell the truth, while knaves always lie. You are approached by two people. The first one says: "At least one of us is a knave".
What are they actually? (puzzle 28 from Smullyan (2011))

Solution by ChatGPT

Wrong

If we assume that the first person is a knight, then what they say ${ }^{\text {Language pattern: maybe GPT uses it to avoid gender bias must be true. However, this leads to a con- }}$ tradiction. If the first person is a knight and they are telling the truth, then both of them can't be knaves as stated. Using info from previous puzzles: this contradicts their statement "At least one of us is a knave? False contradiction: the statement "At least one of us is knave" does not contradict the statement "Both of us are knaves"
If we assume that the first person is a knave, then what they say must be false. This is consistent because a knave lying is expected behavior. If the first person is a knave and they are lying, then it's possible ${ }^{\text {Wrong modality: It's should }}$ that neither of them is a knave. Therefore, the only consistent interpretation is that the first person is a knave and the second person is a knight. Wrong conclusion This way, the statement "At least one of us is a knave" made by the knave is false, ${ }^{\text {Inconsistency: the statement is true }}$ and the second person (a knight) tells the truth. ${ }^{\text {Lack of understanding: the second person says nothing }}$

The worlds collide

Example

There are three friends staying on the couch in Central Perk: Rachel, Ross, and Monica. Monica is looking at Ross. Ross is looking at Rachel. Monica is married; Rachel is not. Is a married person looking at an unmarried person?

Solution by ChatGPT

Correct (but wrong justification)
Yes, a married person is looking at an unmarried person. Ross is married to Rachel ${ }^{\text {The }}$ worlds collide: GPT uses information from Friends TV series and he is looking at her. Since Rachel is unmarried, ${ }^{\text {Inconsistency: GPT has just stated that Ross is married to Rachel }}$ this scenario fits the given information.

Admitting failure - the most interesting answer

Puzzle 24. An unusual number

Find a six-digit number which, when multiplied by an integer between 2 and 9 inclusive, gives the original six-digit number with its digits reversed. Thus, if the original number was 123,456 , and the chosen integer is 8 , then $123,456 \times 8$ should equal 654,321 , which, of course, it doesn't. However, it is possible to find more than one solution to this problem, but I'll accept anyone that meets the required condition (puzzle 34 from (Clessa, 1996))

Solution by ChatGPT

Admitting failure
To find a six-digit number that, when multiplied by an integer between
2 and 9 inclusive, gives the original number with its digits reversed, we can use trial and error ${ }^{\text {Solving strategy: Trial and enro: for GPT this is always incomplete. }}$
Solving strategy: Wrong since it has to try all numbers of 6 digits. to check different numbers. We need to find a number that, when multiplied by any integer between 2 and 9 , gives a result that has the same digits as the original number but in reverse order. ${ }^{\text {Task understanding: It seems so }}$
Let's start with a systematic approach: Start with a six-digit number in the form of ABCDEF. Check all possible multipliers from 2 to 9 (inclusive) and calculate the product. Check if the product has the same digits as the original number ABCDEF but in reverse order. ${ }^{\text {Solving strategy: }}$ Brue force: it seems like an algorithm
Let's illustrate this process with an example: Original number: ABCDEF Let's assume $\mathrm{ABCDEF}=123456$ as an example. Now, we'll check all possible multipliers from 2 to 9.
When multiplied by 2: $123456 * 2=246912$ (not a solution).
When multiplied by 3: $123456 * 3=370368$ (not a solution).
When multiplied by 4: $123456 * 4=493824$ (not a solution).
When multiplied by 5: $123456 * 5=617280$ (not a solution).
When multiplied by 6: $123456 * 6=740736$ (not a solution).
When multiplied by 7: $123456 * 7=864192$ (not a solution).
When multiplied by 8: $123456 * 8=987648$ (not a solution).

Admitting failure - the most interesting answer

Let's try another number: Original number: ABCDEF Let's assume ABCDEF $=142857$ as another example. Now, we'll check all possible multipliers from 2 to 9.
When multiplied by 2: $142857 * 2=285714$ (not a solution).
When multiplied by 3: $142857 * 3=428571$ (not a solution).
When multiplied by 4 : $142857 * 4=571428$ (not a solution).
When multiplied by 5: $142857 * 5=714285$ (not a solution).
When multiplied by $6: 142857 * 6=857142$ (not a solution).
When multiplied by 7: $142857 * 7=999999$ (not a solution).
When multiplied by $8: 142857 * 8=1142856$ (not a solution).
When multiplied by 9: $142857 * 9=1285713$ (not a solution).
None of the products have the same digits as the original number in reverse order for the example $\mathrm{ABCDEF}=142857$.
It is important to note that there are six-digit numbers that satisfy this condition, Solving strategy: Admitting failure may be trigger by the imput sentence: It is possible to find more than one solution" but finding them requires a more systematic approach or potentially using a computer program to check all possible combinations. In this particular example, we didn't find a solution for $\mathrm{ABCDEF}=123456$ or $\mathrm{ABCDEF}=$ 142857. Solving strategy: Interesting formulation: we didn't find a solution.

Abusing epistemic notation: $K_{\text {ChatGPT }}\left(\neg\right.$ K ChatGPT $\left.^{\text {answer }}\right) \rightarrow$ K ChatGPT $^{\text {answer }}$
Abusing temporal logic: $A G\left(K_{\text {ChatGPT }}\left(\neg K_{\text {ChatGPT }}\right.\right.$ answer $\left.)\right) \rightarrow E F\left(K_{\text {ChatGPT }}\right.$ answer $)$

Lost in translation

Solving logical puzzles with LLMs is not a good use case.

Example (But, LLMs master language translations)

(1) NL to First Order Logic - for human robot interaction (kitchen robot)
(2) NL to SUO-KIF - for detecting misinformation (diet domain)
(3) NL to OWL - for supporting ontology engineering
(4) NL to First Order Logic - for reasoning tasks (puzzle domain)

Interpretation models

Monica is in love and Chandler is in love. $\exists x$, love $($ monica, $x) \wedge \exists x$, love $($ chandler, x)

How many models are (e.g. MACE4)?
assign(max_models, -1). assign(domain_size, 4). formulas(assumptions).
exists \times love(chandler, x).
exists x love(monica, x).
end_of_list.
(
c

$p_{1}(2)$
(3) p_{2}


```
For domain size 4.
Current CPU time: 0.00 seconds (total CPU time: 5.66 seconds
Ground clauses: seen=2, kept=2.
Selections=278522, assignments=557049, propagations=18, curr
Rewrite_terms=23, rewrite_bools=20, indexes=18.
Rules_from_neg_clauses=0, cross_offs=0.
============================ end of statiSticS ==============
User_CPU=5.66, System_CPU=10.18, Wall_clock=25.
Exiting with }278528\mathrm{ nodels.
.----- process 4061 exit (all_models) ......
|Process 4061 exit (all models) Sun Jul 28 11:51:49 2019
```


Reducing 278,528 models

(1) UNA: chandler \neq monica 163,840 models
(2) Assume love is not narcissistic: $\forall x, \neg$ love (x, x). $(5,120)$
(3) Assume someone can love only one person at a time:
love $(x, y) \wedge$ love $(x, z) \rightarrow y=z$. (80)
(4) Remove isomorphic interpretations (74)
(5) 2 Skolem consts - assume no interest in love relations between them (17)

Remarks

(1) order of reductions is computationally relevant (186,976 models, 2 h$)$)
(2) which domain knowledge to add is subject to interpretation

Natural language quantifiers for human-robot interaction ${ }^{1}$

Command type	Example
Quantifiers	"Fetch all green peppers"
	"Cut several bananas with a knife"
Referred objects	"Cover 3 trays with paper"
Quantifiers and referred objects	"Next cont 1 mango using cooking knife Knife1"

[^0]| Query | FOL with cardinality |
| :---: | :---: |
| All objects are boxes | $\forall x$ object (x) \rightarrow box (x) |
| No object is a box | $\neg \exists \mathrm{x}$ object (x) \wedge box(x) |
| There is a box | $\exists \mathrm{x}$ object (x) \wedge box (x) |
| There are at least two boxes | $\mid \exists \mathrm{x}$ box $(\mathrm{x}) \mid \geq 2$ |
| There are exactly two boxes | $\|\exists \mathrm{x} \operatorname{box}(\mathrm{x})\|==2$ |
| There are more boxes than tools | $\|\exists \mathrm{x} \operatorname{box}(\mathrm{x})\|>\mid \exists \mathrm{y}$ tool(y) ${ }^{\text {l }}$ |
| Most objects are boxes | $\begin{aligned} & \|\exists x \operatorname{box}(x) \& \operatorname{object}(x)\|>\mid \exists y \\ & \neg \operatorname{box}(y) \& \operatorname{object}(y) \mid \end{aligned}$ |
| There are twice as many boxes as other objects | ```\|\existsx box(x)| == 2 x | \existsy \negbox(y) & object(y)|``` |
| There are many boxes | $\mid \exists \mathrm{x}$ box $(\mathrm{x}) \mid \geq$ threshold |
| How many boxes are there? | $\mid \exists \mathrm{x}$ box (x)\| |

Generating interpretation models

```
assign(domain_size, 5).
list(distinct).
    [Robot1, Tomato1, Tomato2, Whisk1, CookingKnife1].
end_of_list.
formulas(sensors).
    robot(Robot1). tomato(Tomato1). tomato(Tomato2).
    whisk(Whisk1). cookingKnife(CookingKnife1).
end_of_list.
```

Listing 5: Sample content for file "sensors. in"

```
formulas(background_knowledge_classification).
    tomato(x) -> ingredient(x).
    cookingKnife(x) -> kitchenTool(x). whisk(x) -> kitchenTool(x).
end_of_list.
formulas(background_knowledge_distinction).
    ingredient(x) | kitchenTool(x) -> -robot(x).
    robot(x) | kitchenTool(x) -> -ingredient(x).
    robot(x) | ingredient(x) -> -kitchenTool(x).
    cookingKnife(x) -> - whisk(x).
end_of_list.
formulas(background_knowledge_commands).
    robot(x) & (ingredient(y) | kitchenTool(y)) -> fetch(x, y).
    -robot(x) -> - fetch(x, y).
    -ingredient(y) & - kitchenTool(y) -> - fetch(x, y).
end_of_list.
```


Dataset for experiments

Table 4
Dataset distribution

Pair type	Train	Dev	Test
Command	240	80	80
Query	96	32	32
Invalid	60	20	20
Total	$396(60 \%)$	$132(20 \%)$	$132(20 \%)$

Table 5

Command distribution in the dataset

Command	Train	Dev	Test
fetch	59	19	19
cut	38	12	12
bake	36	12	12
line	36	12	12
mix	26	9	9
transfer	16	6	6
sprinkle	16	6	6
shape	13	4	4
Total	240	80	80

Table 6
Query distribution by quantifier

Query	Train	Dev	Test
most/majority of	6	3	3
more than	6	2	3
less than	5	1	2
at most	4	1	1
at least	3	1	1
exactly/only	7	2	1
n	3	1	2
n times more	4	2	1
between k_{1} and k_{2}	4	1	1
many/a lot	4	2	1
several	3	1	1
a few/few	5	2	2
a couple	3	1	1
some	4	1	1
how many/count	7	2	2
half	3	1	2
no/none	4	2	1
all/every	8	3	3
dozen/half a dozen	4	1	1
combinations	9	2	2
Total	96	32	32

Results - 132 testing examples

- 93 translations $(70,45 \%)$ identical to the expected ones;
- 7 translations $(5,30 \%)$ small variations, but logically equivalent
- 32 translations $(24,24 \%)$ wrong, leading to a different interpretation

```
# Expected
{'type':'command','expressions':[['|exists x2 (whisk(x2)).| >= 1']],
    'commands ':['robot(x0) & bowl(Bowl1) & whisk(x2) -> mix(x0, Bowl1,
    x2).']}
# Generated
{'type':'command','expressions':[['|exists x1 (whisk(x1)).| >= 1']],
    'commands':['robot(x0) & bowl(Bowl1) & whisk(x1) -> mix(x0, Bowl1,
    x1).']}
```

Listing 8: A different but correct translation for the prompt: "Blend the contents of the bowl Bowl1 using a whisk"

```
# Expected
{'type':'query','expressions':['all x0 (pepper(x0) -> -redPepper(x0)).']}
# Generated
{'type':'query','expressions':[' all x0 (pepper(x0) -> redPepper(x0)).']}
```

Listing 9: Incorrect translation for the prompt "All peppers are not red chili peppers"

Cross-validation of Answers with SUMO and GPT ${ }^{2}$

Listing 1: Training example for attribute

```
{text : "Apples and bananas are fruits"
    formal: "Apple and banana are subclasses of fruit",
    kif : "(and (subclass Apple Fruit) (subclass Banana Fruit))"}
```

Listing 2: Training example for subclass relation
${ }^{2}$ D. Lupu, A. Groza, A. Pease, Cross-validation of Answers with SUMO and GPT, LK@ISWC, Athens, Greece, 6-10 November 2023

```
{text : "Broccoli contains vitamins."
    formal: "If ?B is an instance of broccoli, then there exists ?V such
    that ?V is an instance of vitamin and ?V is part of ?B."
    kif : "(=> (instance ?B Broccoli) (exists (?V)
        (and (instance ?V Vitamin) (part ?V ?B))))"}
```

Listing 3: Training example for contains/part relation

```
{text: "Parasites damage cells."
    formal: "If ?P is an instance of parasite, then there exists ?D such
    that ?D is an instance of damaging, and ?P is the agent of
    ?D and cell is the patient of ?D."
    kif : "(=> (instance ?P Parasite) (exists (?D)
    (and
    (instance ?D Destroying)
    (agent ?D ?P)
    (patient ?D Nutrient))))"}
```

Listing 4: Training example for agent-patient relation

Type	Training	Testing
Agent-Patient	106	21
Attribute	150	30
Subclass	77	15
Contains-part	85	17
Total	418	83

NL to KIFNL 96\%
KIFNL to KIF 82\%
76/83 correct translations (92%)

Natural Language to $O W L^{3}$

${ }^{3}$ P. Mateiu, A. Groza, Ontology engineering with ChatGPT, SYNASC, Nancy, France, 11-14 September, 2023

Assume Phoebe sings one of the Doris Day songs:

Prompt: "Translate into First Order Logic"

p_{1}	"Everybody loves a lover"	$\forall x(\operatorname{lover}(x) \rightarrow \forall y$ loves $(y, x))$
p_{2}	"I feel in love with you":	loves $(I, Y o u)$
p_{3}	"I am a lover"	$\operatorname{lover}(I)$
c_{2}	"Everybody loves me"	$\forall x \operatorname{loves}(x, I)$
c_{3}	"I love everybody"	$\forall x \operatorname{loves}(I, x)$

ChatGPT "proves" c_{1} but not c_{2}.

Based on three premises $p_{1}=$ "Everybody loves a lover", $p_{2}=" I$ am a lover" and $p_{3}=$ "I feel in love with you" can you prove $c_{2}=$ "I love everybody"?

ChatGPT + Prover9 prove both c_{1} and c_{2}.

Example (Ross trillemma)

Ross is in situation to choose marrying one of Rachel, Emily or Carol. Each woman sent Ross some messages.

Emily

Carol

Given that Ross knows that all the women lie, will Ross be marry or not. Will he be happy or not? Will he marry Rachel or not?

Close the world to four individuals - domainsize $=4$
Avoid isomorphic models: Ross $=0$, Rachel $=1$, Emily $=2$, Carol $=3$

```
m(Rachel) \leftrightarrow (marry(Emily) }->\mathrm{ ᄀhappyRoss)
m(Emily) }\leftrightarrow\quad(\forallx marry (x) -> \neghappyRoss
m(Carol)}\leftrightarrow\leftrightarrow\quad((\mathrm{ marry (Carol) }->\mathrm{ ᄀhappyRoss) }\wedge(\mathrm{ marry(Rmily ) }->\mathrm{ happyRoss))
```

All messages are false: $\neg m($ Rachel $) \wedge \neg m($ Emily $) \wedge \neg m($ Carol $)$
Helping the solver vs. helping ChatGPT

- Ross should be married: $\exists x$ marry (x)
- Marry only one: $\forall x \forall y(\operatorname{marry}(x) \wedge \operatorname{marry}(y) \rightarrow x=y)$
- Ross cannot maried to himself: $\exists x x \neq \operatorname{Ross} \wedge \operatorname{marry}(x)$

Students find the single model. In this model Ross is happy (by marring Emily).

Prompt: Solve the following puzzle

Since we know that all the women lie, none of their statements can be true.[...] If Ross marries Rachel, [...] If Ross marries Emily, [...] If Ross marries Carol, [...] Since there is no consistent information among the statements, Ross's decision cannot be based on these statements alone. Therefore, Ross cannot make a logical decision based on the information provided. Whether Ross marries or not and whether he is happy or not will be uncertain in this scenario.

Consider that Ross should marry at least one woman.

...Since Ross must marry at least one woman, he has two choices: Rachel and Carol. .. Ross should choose based on his own feelings and preferences. Ross's happiness in marriage will depend on his compatibility with the chosen woman, which cannot be determined from the information provided.

Does Ross can marry more than one woman?
[...] based on the information provided and standard assumptions about marriage, Ross can only marry one woman.

Does Ross can marry to himself?

While self-love and self-acceptance are important, they are typically not expressed through the institution of marriage to oneself. Instead, individuals can nractice self-care self-accentance and celf-imnrovement to nromote their

Wise men speak because they have something to say; Fools because they have to say something. - Plato

There are three friends staying on the couch in Central Perk: Rachel, Ross, and
Monica. $\forall x(F(x) \wedge S(x)) \rightarrow(x=$ Rachel $\vee x=$ Ross $\vee x=$ Monica $)$
Monica is looking at Ross: L(Monica, Ross)
Ross is looking at Rachel. L(Ross, Rachel)
Monica is married. M(Monica)
Rachel is not married. $\neg M($ Rachel $)$
Theorem to prove: $\exists x \exists y(M(x) \wedge U(y) \wedge L(x, y))$

ChatGPT performance on 100 puzzles

- 7 correct puzzles
- on average, 26.03% from the generated text is a logical fault
- 698 logical faults (average 7 fallacies/puzzle)

Lost in translation with GPT models

- First Order Logic - for human robot interaction (kitchen robot)
- SUO-KIF - for detecting misinformation (diet domain)
- OWL - for supporting ontology engineering (family ontology)
- First Order Logic - for reasoning tasks (puzzle domain)

Groza, A.: Modelling Puzzles in First Order Logic. Springer (2021)
https://users.utcluj.ro/~agroza/puzzles/maloga/codes.html
https://users.utcluj.ro/~agroza/puzzles/maloga/chatGPT_puzzles.pdf
https://users.utcluj.ro/~agroza/puzzles/maloga/100puzzles.txt
Adrian.Groza@cs.utcluj.ro

$$
\forall x(\text { participant }(x, W G 4-W G 5) \rightarrow \text { thank }(I, x))
$$

[^0]: ${ }^{1}$ S. Morar, A. Groza, M. Pomarlan, Natural language quantifiers for human-robot interaction, AIC, Bremen , Germany 14-15 September 2023

