Experiences with Natural Language Proof Checking

BY PETER KOEPKE University of Bonn, Germany

CICM, NatFoM, Cambridge, September 6th 2023

Naproche (Natural Proof Checking)

Since \sim 2017, building on SAD (A. Paskevich) and previous Naproche (M. Cramer)

Controlled Natural Language for Mathematics as ITP input (LATEX format)

Natural proof details and granularities

Natural ontology (First-order logic, set/function/number theory)

Convenient prover environment (Isabelle/jEdit)

 Naproche text

 Machine checking (with ATP)

 Human reading (after typesetting)

https://naproche.github.io/

≡ 🖌 Q

NAPROCHE

The **Naproche** natural proof assistant emulates the usual reading and checking of mathematical proofs which combine natural argumentative language with symbolic material and are often typeset using LaTeX.

Theorem. $\sqrt{2}$ is irrational. Proof. Proof by contradiction. Assume that $\sqrt{2}$ is rational. Take natural numbers m, n such that $n \neq 0$ and $\frac{m}{n} = \sqrt{2}$ and if m is even then n is odd. Then $\frac{m^2}{n^2} = 2$ and $m^2 = 2 \cdot n^2$. Hence m is even and $n^2 = m \cdot \frac{m}{2}$. But then nis even. Contradiction. Qed.

The \mathbb{N} aproche process

Controlled Natural mathematical language (ForTheL, Formula Theory Language, LATEX)

 \Downarrow Parser + Simplifications

(Enriched) First-order statements, in an internal representation

 \Downarrow Reasoner

Proof tasks (TPTP)

```
\Downarrow E prover (or Vampire, ...)
```

verification successful / failed

https://naproche.github.io/

Download

Naproche is distributed as part of the Isabelle prover platform, which can easily be installed under the major operation systems. Opening a ForTheL file in ASCII format (.ftl) or LaTeX format (.ftl.tex) in the Isabelle/jEdit editor will automatically invoke its continuous checking by Naproche.

<

>

Isabelle

What is Isabelle?

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and pro <u>Cambridge</u> and <u>Technische Universität München</u>, but now includes numerous contributions from institutions and ind

Now available: Isabelle2022 (October 2022)

Download for Linux (Intel) - Download for Linux (ARM) - Download for Windows - Download for macOS

Hardware requirements:

- Small experiments: 4 GB memory, 2 CPU cores
- Medium applications: 8 GB memory, 4 CPU cores
- Large projects: 16 GB memory, 8 CPU cores
- Extra-large projects: 64 GB memory, 16 CPU cores

Some notable changes:

- HTML presentation is more robust and covers more files and links.
- Display of instantiation for schematic goals.
- PIDE: improved Isabelle/VSCode based on bundled VSCodium engine.

Naproche **Demo** in Isabelle/jEdit

- Naproche is (*in principle*) a complete proof assistant
- Naproche so far is prototypical, incomplete, unstable, \dots
- limited library of formalizations
- Naproche proofs can be readable
- Readability could be important for the acceptability of formal mathematics

Formalizing in \mathbb{N} approche requires dealing with:

- the mathematical problem at hand
- the underlying logic of \mathbb{N} aproche (FOL)
- first-order proving with external ATPs
- the input language ForTheL

Formalizing in \mathbb{N} approche requires dealing with:

- the mathematical problem at hand
- the underlying logic of \mathbb{N} aproche (FOL)
- first-order proving with external ATPs
- the input language ForTheL

plus naturalness requirements:

- natural mathematical language
- natural foundational assumptions (FOL and sets)
- natural proof granularities (heavy prover load)
- natural proof and text structures
- natural mathematical typesetting $(L^{A}T_{E}X)$

Naturalness requirements:

- natural mathematical language
- natural foundational assumptions (FOL and sets)
- natural proof granularities (heavy prover load)
- natural proof and text structures
- natural mathematical typesetting ($L^{A}T_{E}X$)

The Burden of Naturalness:

- natural mathematical language: working in a rich controlled natural language (CNL, ForTheL) which approximates but is not equal to free natural language, possibilities of ambiguity and unexpected interpretations
- natural foundational assumptions (FOL and sets): interplay between natural language soft types and "first-order types", type guards
- natural proof granularities (heavy prover load): declarative proofs, proof steps may take many seconds or may time out on E prover, resolution proving often "unnatural"
 (∀x∃y¬y < f(x) ⇔∀x∃y f(x) ≤ y),
- natural proof and text structures
- natural mathematical typesetting (L^AT_EX): document structuring, layout, L^AT_EX macros for natural symbolism, natural naming of entities, "aesthetic" requirements
- difficult user experience, \mathbb{N} aproche has so far only been used in the Bonn group

The Burden of Naturalness:

Possible Computer Assistance:

- natural mathematical language: improving ForTheL and ForThel parsing, language support in the editor, like suggestions of possible phrases
- natural foundational assumptions (FOL and sets): libraries of foundational files
- natural proof granularities (heavy prover load): improving the Naproche reasoner and the use of external ATPs, caching of prover outputs, (hoping for) stronger ATPs, term rewriting, SMT for certain theories
- natural mathematical typesetting (LATEX): WYSIWYG mathematical editing, like TEXMACS

Options for further developments

- Invest massively into the code of the $\ensuremath{\mathbb{N}}\xspace$ approache system
- Program a new natural system that circumvents weaknesses and complications of Naproche; indeed, Adrian De Lon is working towards a novel set-theory based natural proof assistant
- Combine the natural language approach of Naproche with established systems; Naproche-type interfaces or input languages to Isabelle/HOL, Mizar, ...
- Focus on limited areas of mathematics for didactical or demonstration purposes, like introductory number systems or undergraduate calculus

- ..., ???

General take-home:

Formal mathematics can be done with a natural language input

Thank you!