
Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Rendering Natural Language of Mathematical
Texts into Formal Language

Roussanka Loukanova

Institute of Mathematics and Informatics (IMI)
Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria

NatFoM: Workshop on Natural Formal Mathematics, Cambridge,
6 September 14:00–18:00

Joint WG4-WG5 meeting, Cambridge, UK, 6-8 September 2023
https://europroofnet.github.io/cambridge-2023

1 / 59

https://europroofnet.github.io/cambridge-2023

Outline
1 A Glimpse of Approaches to Formal and Computational Grammar

Overview of Approaches to Computational Semantics
2 Syntax and Denotational Semantics of Lλ

ar

Syntax of Lλ
ar

Denotational Semantics of Lλ
ar / Lλ

rar

3 Reduction Calculi, Canonical Forms, and Algorithmic Semantica
γ∗-Reduction
Canonical Forms and Algorithmic Semantics
Algorithmic Equivalence
Expressiveness of Lλ

ar / Lλ
r

4 Parametric Algorithmic Patterns
Pure Quantifiers
Generalised Quantifiers, Algorithmic Patterns, Ambiguity,
Underspecification
Definite Descriptors with Determiner “the”
Conjuncts and Coordination

5 Computational Syntax-Semantics of NL via Lλ
ar

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Overview of Approaches to Computational Semantics

Approaches to formal and computational syntax of natural language (NL)

All of the following approaches are at least partly active
CFGs, Phrase Structure Grammars (PSG): initiated by Chomsky 1950s
Transformational Grammars: initiated by Chomsky 1955, 1957, with

versions to the present
Generative Semantics: 1967-74 Lakoff, McCawley, Postal, Ross
Government and Binding Theory (GBT): initiated by Chomsky 1981
Principles and Parameters initiated by Chomsky 1981 with GBT
Minimalist Program initiated by Chomsky 1995 (major work)
Constraint-Based, Lexicalist Approaches

GPSG: Gazdar et al. 1979-87 to the present
LFG: 1979 to the present
HPSG: 1984 to the present

Categorial Grammars Ajdukiewicz 1935 to the present
Dependency Grammar (DG): active
Grammatical Framework (GF) Multi-Lingual, Chalmers, 1998, Aarne

Ranta (25 years on, in Mar 2023) (open development)
…

3 / 59

Overview of Approaches to Computational Semantics

Categorial Grammars: Ajdukiewicz 1935 — formal logic for syntax
for NL to the present, with initiations for syntax-semantics
Type-Theoretical Grammars in many varieties
Montague Grammars: started by Montague 1970 to the present
Situation Theory and Situation Semantics, Jon Barwise 1980ies
Inspired partiality in computational syntax of LFG and HPSG;
Since start HPSG approaches, 1984, have been using Situation
Semantics in syntax-semantics interfaces;
Minimal Recursion Semantics in HPSG since 2000-2002
MRS is a technique as a form of Situation Semantics with major
characteristics of Moschovakis recursion
Moschovakis [12] Formal Language of full recursion, untyped;
Typed acyclic recursion, introduced by Moschovakis [13] (2006)
Algorithmic Dependent-Type Theory of Situated Information
(DTTSitInfo): situated data including context assessments (open)
Other Approaches to Computational Semantics many combinations
and variants of FOL, e.g., Prolog, Definite Clause Grammars, etc.

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Overview of Approaches to Computational Semantics

Algorithms for computing denotations of terms

Algorithmic syntax-semantics of Lλ
ar (Lλ

r) and Natural Language

Syntax of Lλ
ar (Lλ

r) =⇒ Algorithms for Computations =⇒ Denotations︸ ︷︷ ︸
Semantics of Lλ

ar(L
λ
r)

(1)

Computational Syntax of NL︸ ︷︷ ︸
Computational Grammar

render−−−→ Lλ
ar (2)

Computational Syntax of NL render−−−→ Lλ
ar︸ ︷︷ ︸

Computational Grammar: Syntax-Semantics Interface

(3)

5 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Overview of Approaches to Computational Semantics

Development of Type-Theory of (Acyclic) Algorithms, Lλ
r (Lλ

ar)

Placement of Lλ
ar in a class of type theories

Montague IL ⊊ Gallin TY2 ⊊ Moschovakis Lλ
ar ⊊ Moschovakis Lλ

r (4)

Type-Theory of (Acyclic) Algorithms, Lλ
r (Lλ

ar): provides:
a math notion of algorithm
Computational Semantics of formal and natural languages

Lλ
ar / Lλ

r is type theory of algorithms with acyclic / full recursion:
Introduced by Moschovakis [13] (2006),
Math development by motivations from NL, Loukanova [8, 9] (2019)
and previously

In the works presented here, I extend Lλ
ar / Lλ

r by incorporating
logic operators, by logic constants of suitable types
pure, logic quantifiers
extended reduction calculus of Lλ

ar / Lλ
r

demonstrate (there is a math proof) that Lλ
ar / Lλ

r essentially extend
classic λ-calculus,
incl., for logic operators and pure quantifiers

6 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Syntax of Lλ
ar

Denotational Semantics of Lλ
ar / Lλ

rar

Syntax of Type Theory of Algorithms (TTA): Types, Vocabulary

Gallin Types (1975)
τ ::= e | t | s | (τ → τ) (Types)

Abbreviations
σ̃ ≡ (s→ σ), for state-dependent objects of type σ̃ (5a)
ẽ ≡ (s→ e), for state-dependent entities (5b)
t̃ ≡ (s→ t), for state-dependent truth values (5c)

Typed Vocabulary, for all σ ∈ Types

Kσ = Constsσ = {cσ0 , cσ1 , . . . } (6a)
∧,∨,→ ∈ Consts(τ→(τ→τ)), τ ∈ { t, t̃ } (logical constants) (6b)
¬ ∈ Consts(τ→τ), τ ∈ { t, t̃ } (logical constant for negation) (6c)
PureVσ = {vσ0 , vσ1 , . . . } (pure variables) (6d)
RecVσ = MemoryVσ = {pσ0 , pσ1 , . . . } (recursion variables) (6e)
PureVσ ∩RecVσ = ∅, Varsσ = PureVσ ∪RecVσ (6f)

7 / 59

Terms of Type Theory of Algorithms (TTA): Lλ
ar acyclic recursion (Lλ

r full recursion)

A :≡ cσ : σ | Xσ : σ | B(σ→τ)(Cσ) : τ | λ(vσ) (Bτ) : (σ → τ) (7a)
| Aσ0

0 where { pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } : σ0 (7b)
| ∧ (Aτ

2)(A
τ
1) : τ | ∨ (Aτ

2)(A
τ
1) : τ | → (Aτ

2)(A
τ
1) : τ (7c)

| ¬(Bτ) : τ (7d)
| ∀(vσ)(Bτ) : τ | ∃(vσ)(Bτ) : τ (pure quantifiers) (7e)
| Aσ0

0 such that {Cτ1
1 , . . . ,Cτm

m } : σ′
0 (restrictor operator) (7f)

cτ ∈ Constsτ , Xτ ∈ PureVτ ∪ RecVτ , vσ ∈ PureVσ

B,C ∈ Terms, pσi
i ∈ RecVσi

, Aσi
i ∈ Termsσi

, Cτj
j ∈ Termsτj

In (7c)–(7e), (7f): τ, τj ∈ { t, t̃ }, t̃ ≡ (s→ t) (for propositions)
Acyclicity Constraint (AC), for Lλ

ar; without it, Lλ
r with full recursion

{ pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } (n ≥ 0) is acyclic iff (8a)
for some function rank : {p1, . . . , pn} → N
if pj ∈ FreeV(Ai) (pj occurs freely in Ai),
then rank(pi) > rank(pj)

(8b)

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Syntax of Lλ
ar

Denotational Semantics of Lλ
ar / Lλ

rar

Types of Restrictor Terms

In the restrictor term (7f) / (9),

Aσ0
0 such that {Cτ1

1 , . . . , Cτn
n } : σ′

0 (9)

for each i = 1, . . . , n:
τi ≡ t (state independent truth values), or
τi ≡ t̃ ≡ (s→ t) (state dependent truth values)

σ′
0 ≡



σ0, if τi ≡ t, for all i ∈ { 1, . . . , n } (10a)
σ0 ≡ (s→ σ), if τi ≡ t̃, for some i ∈ { 1, . . . , n }, and (10b)

for some σ ∈ Types, σ0 ≡ (s→ σ)

σ̃0 ≡ (s→ σ0), if τi ≡ t̃, for some i ∈ { 1, . . . , n }, and (10c)
there is no σ, s.th. σ0 ≡ (s→ σ)

9 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Syntax of Lλ
ar

Denotational Semantics of Lλ
ar / Lλ

rar

Denotational Semantics of Lλ
ar / Lλ

rar

A standard semantic structure is a tuple A(Consts) = 〈T, I 〉 that
satisfies the following conditions:

T = {Tσ | σ ∈ Types} is a frame of typed objects
{ 0, 1, er } ⊆ Tt ⊆ Te (er t ≡ er e ≡ er ≡ error)
Ts 6= ∅ (the domain of states)
T(τ1→τ2) = (Tτ1 → Tτ2) = { f | f : Tτ1 → Tτ2 } (standard str.)
erσ ∈ Tσ, for every σ ∈ Types (designated typed errors)
I : Consts −→ ∪T is a typed interpretation function:
I(c) ∈ Tσ, for every c ∈ Constsσ

A is associated with the set of the typed variable valuations G:

G = {g | g : PureV∪RecV −→
⋃

T

and, for every X ∈ Varsσ, g(X) ∈ Tσ}
(11)

10 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Syntax of Lλ
ar

Denotational Semantics of Lλ
ar / Lλ

rar

The Denotation Function of Lλ
ar / Lλ

ar (to be continued)

Let’s assume a given semantic structure A, and write den ≡ denA

There is a unique function, called the denotation function:
denA : Terms −→ { f | f : G −→ ∪T }
defined by recursion on the structure of the terms

(D1) (1) den(X)(g) = g(x), for every X ∈ Vars
(2) den(c)(g) = I(c), for every c ∈ Consts

(D2) den(A(B))(g) = den(A)(g)(den(B)(g))

(D3) den(λx(B))(g)
(
a
)
= den(B)(g{x := a}), for every a ∈ Tτ

11 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Syntax of Lλ
ar

Denotational Semantics of Lλ
ar / Lλ

rar

The Denotation of the Recursion Terms (continuation) (to be continued)

(D4) den(A0 where {p1 := A1, . . . , pn := An})(g) =
den(A0)(g{p1 := p1, . . . , pn := pn})
where pi ∈ Tτi are defined by recursion on rank(pi):

pi = den(Ai)(g{pk1
:= pk1

, . . . , pkm
:= pkm

})

given that pk1
, . . . , pkm

are all of the recursion variables
pj ∈ {p1, . . . , pn}, s.t. rank(pj) < rank(pi).

Intuitively:
den(A1)(g), . . . , den(An)(g) are computed recursively, by rank(pi),
and stored in pi, 1 ≤ i ≤ n

the denotation den(A0)(g) may depend on the values stored in
p1, . . . , pn

(D5) (for the constants of the logic operators) …

12 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Syntax of Lλ
ar

Denotational Semantics of Lλ
ar / Lλ

rar

The Denotation of the Logic-Quantifiers Terms (continuation) (to be continued)

(D6b) Simplified version, without considering the erroneous cases of er

The denotation of the state-dependent, pure existential quantifier,
for τ = t̃, denA

(
∃(vσ)(Bτ)

)
(g) : Ts → Tt is such that:

for every state s ∈ Ts: (12a)[
denA

(
∃(vσ)(Bτ)

)
(g)

]
(s) = 1 (true in s) (12b)

iff there is a ∈ Tσ, in the semantic domain Tσ, such that:[
denA

(
Bτ

)
(g{ v := a })

]
(s) = 1

(12c)

13 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Syntax of Lλ
ar

Denotational Semantics of Lλ
ar / Lλ

rar

The Denotation Function for the Restrictor Terms (continuation) (to be continued)

(D7) For every g ∈ G, and every state s ∈ Ts:
Case 1: for all i ∈ { 1, . . . , n }, Ci ∈ Termst (independent on states)
For every g ∈ G:

den
(
Aσ0

0 s.t. {
−→
C }

)
(g) =



den(A0)(g), if, for all i ∈ { 1, . . . , n },
den(Ci)(g) = 1

erσ0
if, for some i ∈ { 1, . . . , n },
den(Ci)(g) = 0 or
den(Ci)(g) = er

(13)

14 / 59

Case 2: for some i ∈ { 1, . . . , n }, Ci : t̃

den
(
Aσ0

0 s.t. {
−→
C }

)
(g)(s) (14)

=



den(A0)(g)(s), if den(Ci)(g) = 1, for all i s.th. Ci : t, and
den(Ci)(g)(s) = 1, for all i s.th. Ci : t̃, and
σ0 ≡ (s→ σ)

den(A0)(g), if den(Ci)(g) = 1, for all i s.th. Ci : t, and
den(Ci)(g)(s) = 1, for all i s.th. Ci : t̃, and
σ0 6≡ (s→ σ), for all σ ∈ Types

erσ′
0
, otherwise

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

γ∗-Reduction
Canonical Forms and Algorithmic Semantics
Algorithmic Equivalence
Expressiveness of Lλ

ar / Lλ
r

A ∈ Terms is explicit iff the operator where does not occur in A

A ∈ Terms is a λ-calculus term iff it is explicit and no recursion
variable occurs in it

Definition (Immediate and Proper Terms)

The set ImT of immediate terms is defined by recursion (15)

T :≡ V | p(v1) . . . (vm) | λ(u1) . . . λ(un)p(v1) . . . (vm) (15)

for V ∈ Vars, p ∈ RecV, ui, vj ,∈ PureV,
i = 1, . . . , n, j = 1, . . . ,m (m,n ≥ 0)
Every A ∈ Terms that is not immediate is proper

PrT = (Terms− ImT) (16)

Immediate terms do not carry algorithmic sense:
den(p(v1) . . . (vm)) is by variable valuation, in memory p ∈ RecV.

16 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

γ∗-Reduction
Canonical Forms and Algorithmic Semantics
Algorithmic Equivalence
Expressiveness of Lλ

ar / Lλ
r

Definition (Congruence Relation, informally)

The congruence relation is the smallest equivalence relation (i.e.,
reflexive, symmetric, transitive) between Lλ

ar-terms, A ≡c B, that is
closed under:

1 operators of term-formation:
application
λ-abstraction
logic operators
pure, logic quantifiers
acyclic recursion
restriction

2 renaming bound variables (pure and recursion), without causing
variable collisions

3 re-ordering of the assignments within the acyclic sequences of
assignments in the recursion terms

4 re-ordering of the restriction sub-terms in the restriction terms
17 / 59

Reduction Rules (to be continued)

[Congruence] If A ≡c B, then A⇒ B (cong)

[Transitivity] If A⇒ B and B ⇒ C, then A⇒ C (trans)
[Compositionality]
• If A⇒ A′ and B ⇒ B′, then A(B)⇒ A′(B′) (ap-comp)

• If A⇒ B, and ξ ∈ {λ, ∃, ∀ }, then ξ(u)(A)⇒ ξ(u)(B) (lq-comp)

• If Ai ⇒ Bi (i = 0, …, n), then

A0 where { p1 := A1, . . . , pn := An }
⇒ B0 where { p1 := B1, . . . , pn := Bn }

(wh-comp)

• If A0 ⇒ B0 and Ci ⇒ Ri (i = 0, …, n), then

A0 such that {C1, . . . , Cn }
⇒ B0 such that {R1, . . . , Rn }

(st-comp)

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

γ∗-Reduction
Canonical Forms and Algorithmic Semantics
Algorithmic Equivalence
Expressiveness of Lλ

ar / Lλ
r

Reduction Rules (to be continued)

[Head Rule] Given that pi 6= qj and no pi occurs freely in any Bj ,(
A0 where {−→p :=

−→
A }

)
where {−→q :=

−→
B }

⇒ A0 where {−→p :=
−→
A, −→q :=

−→
B }

(head)

[Bekič-Scott Rule] Given that pi 6= qj and no qi occurs freely in any Aj

A0 where { p :=
(
B0 where {−→q :=

−→
B }

)
, −→p :=

−→
A }

⇒ A0 where { p := B0,
−→q :=

−→
B, −→p :=

−→
A }

(B-S)

[Recursion-Application Rule] Given that no pi occurs freely in B,(
A0 where {−→p :=

−→
A }

)
(B)

⇒ A0(B) where {−→p :=
−→
A }

(recap)

19 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

γ∗-Reduction
Canonical Forms and Algorithmic Semantics
Algorithmic Equivalence
Expressiveness of Lλ

ar / Lλ
r

Reduction Rules (to be continued)

[Application Rule] Given that B ∈ PrT is a proper term, and p is fresh,
p ∈

[
RecV−

(
FV

(
A(B)

)
∪ BV

(
A(B)

))]
,

A(B) ⇒
[
A(p) where { p := B }

]
(ap)

[λ and Quantifiers rules] Let ξ ∈ {λ, ∃, ∀ }.
Given fresh p′i ∈

[
RecV−

(
FV(A) ∪ BV(A)

)]
, i = 1, . . . , n, for

A ≡ A0 where { p1 := A1, . . . , pn := An } and replacements A′
i in (20):

A′
i ≡

[
Ai

{
p1 :≡ p′1(u), . . . , pn :≡ p′n(u)

}]
(20)

ξ(u)
(
A0 where { p1 := A1, . . . , pn := An }

)
⇒ ξ(u)A′

0 where { p′1 := λ(u)A′
1, . . . , p

′
n := λ(u)A′

n }
(ξ)

20 / 59

Restriction Rules of Lλ
rar

each Rτi
i ∈ Terms in −→R is immediate and τi ∈ { t, t̃ }

each C
τj
j ∈ Terms is proper and τj ∈ { t, t̃ } (j = 1, . . . ,m, m ≥ 0)

a0, cj ∈ RecV (j = 1, . . . ,m) fresh

(st1) Rule A0 is an immediate term, m ≥ 1

(A0 such that {C1, . . . , Cm,
−→
R }) (st1)

⇒ (A0 such that { c1, . . . , cm,
−→
R })

where { c1 := C1, . . . , cm := Cm }

(st2) Rule A0 is a proper term

(A0 such that {C1, . . . , Cm,
−→
R }) (st2)

⇒ (a0 such that { c1, . . . , cm,
−→
R })

where { a0 := A0,

c1 := C1, . . . , cm := Cm }

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

γ∗-Reduction
Canonical Forms and Algorithmic Semantics
Algorithmic Equivalence
Expressiveness of Lλ

ar / Lλ
r

γ∗-Reduction stronger reduction

Definition (γ∗-condition)

A term A ∈ Terms satisfies the γ∗-condition for an assignment
p := λ(−→u −→σ)λ(vσ)P τ : (−→σ → (σ → τ)), with respect to λ(vσ),
iff A is of the form: (23a)–(23c):

A ≡ A0 where {−→a :=
−→
A, (23a)

p := λ(−→u)λ(v)P, (23b)
−→
b :=

−→
B } (23c)

such that the following holds:
1 v 6∈ FreeVars(P)

2 All occurrences of p in A0, −→A , and −→B are occurrences:
in p(−→u)(v),
which are in the scope of λ(v)
modulo renaming the variables −→u , v

22 / 59

(γ∗)-rule

A ≡ A0 where {−→a :=
−→
A, (24a)

p := λ(−→u)λ(v)P, (24b)
−→
b :=

−→
B } (24c)

⇒(γ∗) A
′
0 where {−→a :=

−→
A ′, (24d)

p′ := λ(−→u)P, (24e)
−→
b :=

−→
B′ } (24f)

given that:
A ∈ Terms satisfies the γ∗-condition (in Definition 3) for
p := λ(−→u)λ(v)P : (−→σ → (σ → τ)), with respect to λ(v)
p′ ∈ RecV(−→σ→τ) is a fresh recursion variable
−→
X ′ ≡

−→
X{p(−→u)(v) :≡ p′(−→u)} is the result of the replacements

Xi{p(−→u)(v) :≡ p′(−→u)},
i.e., replacing all occurrences of p(−→u)(v) by p′(−→u), in all
corresponding parts Xi ≡ Ai, Xi ≡ Bi, in (24a)–(24f), modulo
renaming the variables −→u , v

Theorem (γ∗-Canonical Form Theorem)

For each A ∈ Terms, there is a unique up to congruence, γ∗-irreducible
cfγ*(A) ∈ Terms, s.th.:

1 for some explicit, γ∗-irreducible A0, . . . , An ∈ Terms (n ≥ 0)

cfγ*(A) ≡ A0 where {p1 := A1, . . . , pn := An}

2 A⇒∗
γ∗ cfγ*(A)

3 for every B, such that A⇒∗
γ∗ B and B is γ∗-irreducible, it holds

that B ≡c cfγ*(A)
i.e., cfγ*(A) is unique, up to congruence

4 Consts(cfγ*(A)) = Consts(A) and
5 FreeV(cfγ*(A)) = FreeV(A)

Proof.
The proof is by induction on term structure of A, (7a)–(7e), (7f), using
reduction rules, definitions, and properties of reduction.
The reduction rules and their applications do not remove and do not add
any constants and free variables.

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

γ∗-Reduction
Canonical Forms and Algorithmic Semantics
Algorithmic Equivalence
Expressiveness of Lλ

ar / Lλ
r

Algorithmic Semantics of Lλ
ar / Lλ

r

How is the algorithmic meaning / semantics of a proper (non-immediate)
A ∈ Terms determined?

For every term A ∈ Terms, by the Canonical Form Theorem 4:

A⇒ cf(A)

A⇒γ∗ cfγ*(A)

For each proper (i.e., non-immediate) A ∈ Terms,
cf(A) / cfγ*(A) determines the algorithm alg(A) for computing
den(A)

Theorem (Effective Reduction Calculi)
For every term A ∈ Terms, its canonical forms cf(A) and cfγ*(A) are
effectively computed, by the extended reduction calculus.

25 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

γ∗-Reduction
Canonical Forms and Algorithmic Semantics
Algorithmic Equivalence
Expressiveness of Lλ

ar / Lλ
r

Definition (of Algorithmic Equivalence / Synonymy)

Two terms A,B ∈ Terms are algorithmically equivalent, A ≈ B, in a
given semantic structure A, i.e., referentially synonymous in A, iff

A and B are both immediate, or
A and B are both proper

and there are explicit, irreducible terms (of appropriate types), A0, …,
An, B0, …, Bn, n ≥ 0, such that:

(1) A⇒cf A0 where { p1 := A1, . . . , pn := An } ≡ cf(A)

(2) B ⇒cf B0 where { p1 := B1, . . . , pn := Bn } ≡ cf(B)

(3) for all i ∈ { 0, . . . , n }
(a) for every x ∈ PureV∪RecV,

x ∈ FreeV(Ai) iff x ∈ FreeV(Bi) (25)

(b) den(Ai) = den(Bi)

26 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

γ∗-Reduction
Canonical Forms and Algorithmic Semantics
Algorithmic Equivalence
Expressiveness of Lλ

ar / Lλ
r

Type Theory Lλ
ar / Lλ

r is more expressive than Gallin TY2

Theorem (Moschovakis [13] 2006, §3.24 (mild adjustment))

(1) For any explicit (λ-calculus) A ∈ Terms, there is no (assignment)
memory location, bound via where in its canonical form, which
occurs in more than one of its parts Ai (0 ≤ i ≤ n) of cf(A) /
cfγ*(A)

(2) Assume that A ∈ Terms is such that an assignment location
p ∈ RecV, bound via where in its canonical form cf(A) / cfγ*(A),
occurs in (at least) two assignment parts, and the denotations of
those parts depend essentially on p:
Then, there is no explicit (λ-calculus) term B ∈ Terms, such that B
is algorithmically equivalent to A, B ≈ A,
i.e., for all λ-calculus B ∈ Terms, B 6≈ A.

The proof is by Moschovakis [13] (2006). I provide it for the extended
Lλ
ar / Lλ

r

27 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Pure Quantifiers
Generalised Quantifiers, Algorithmic Patterns, Ambiguity, Underspecification
Definite Descriptors with Determiner “the”
Conjuncts and Coordination

Reductions with Pure Quantifier Rules: Algorithmic Patterns and Instantiations

Assume cube, large0 ∈ Consts(̃e→ t̃), in the typical Aristotelian form:

Some cube is large render−−−→ B ≡ ∃x(cube(x) ∧ large0(x)) (26a)
B ⇒ ∃x((c ∧ l) where { c := cube(x), l := large0(x) }) (26b)

by 2 x (ap) (ap-comp), (recap), (wh-comp), (head), (lq-comp)

⇒ ∃x(c′(x) ∧ l′(x))︸ ︷︷ ︸
B0 algorithmic pattern

where { (26c)

c′ := λ(x)(cube(x)), l′ := λ(x)(large0(x))︸ ︷︷ ︸
instantiations of memory slots c′, l′

} ≡ cf(B) (26d)

from (26c), by (ξ) to ∃
≈ ∃x(c′(x) ∧ l′(x))︸ ︷︷ ︸

B0 algorithmic pattern

where { c′ := cube, l′ := large0︸ ︷︷ ︸
instantiations of memory slots c′, l′

} ≡ B′ (26e)

by Def. 6 from (26c)–(26d), den(λ(x)(cube(x))) = den(cube),

den(λ(x)(large0(x))) = den(large0)
(26f)

28 / 59

Repeated Calculations

Some cube is large render−−−→ T, large ∈ Consts((̃e→ t̃)→(̃e→ t̃)) (27a)
T ≡ ∃x

[
cube(x) ∧ large(cube)(x)︸ ︷︷ ︸

by predicate modification

]
⇒ . . . (27b)

⇒ ∃x
[
(c1 ∧ l) where { c1 := cube(x), (27c)
l := large(c2)(x), c2 := cube }

]
(27d)

⇒ ∃x(c′1(x) ∧ l′(x)) where { c′1 := λ(x)(cube(x)), (27e)
l′ := λ(x)(large(c′2(x))(x)), c

′
2 := λ(x)cube } (27f)

≡ cf(T) (27e)–(27f) is by (ξ) on (27c)–(27d)

⇒γ∗ ∃x(c′1(x) ∧ l′(x)) where { c′1 := λ(x)(cube(x)), (27g)
l′ := λ(x)(large(c2)(x)), c2 := cube } (27h)

≡ cfγ*(T)

≈ ∃x(c′1(x) ∧ l′(x)) where { c′1 := cube, (27i)
l′ := λ(x)(large(c2)(x)), c2 := cube } (27j)

Some cube is large render−−−→ C, large ∈ Consts((̃e→ t̃)→(̃e→ t̃))

C ≡ ∃x
[
c′(x) ∧ large(c′)(x)

]︸ ︷︷ ︸
E0

where { c′ := cube } (28a)

⇒ ∃x
[(
c′(x) ∧ l

)
where { l := large(c′)(x) }

]︸ ︷︷ ︸
E1

where { c′ := cube }
(28b)

from (28a), by (ap) to ∧ of E0; (lq-comp); (wh-comp)

⇒
[
∃x

(
c′(x) ∧ l′(x)

)
where { l′ := λ(x)

(
large(c′)(x)

)
}︸ ︷︷ ︸

E2

]
where { c′ := cube }

(28c)

from (28b), by (ξ) to ∃

⇒ ∃x
(
c′(x) ∧ l′(x)

)︸ ︷︷ ︸
C0 an algorithmic pattern

where { c′ := cube, l′ := λ(x)
(
large(c′)(x)

)︸ ︷︷ ︸
instantiations of memory c′, l′

} ≡ cf(C)
(28d)

from (28c), by (head); (cong)

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Pure Quantifiers
Generalised Quantifiers, Algorithmic Patterns, Ambiguity, Underspecification
Definite Descriptors with Determiner “the”
Conjuncts and Coordination

Proposition
1 The Lλ

ar-terms C ≈ cf(C) in (28a)–(28d), and many other
Lλ
ar-terms, are not algorithmically equivalent to any explicit terms

2 Lλ
ar is a strict, proper extension of TY2, Gallin [4]

3 and of a la Montague semantics via inclusion of Montague IL in TY2

Outline of a proof:
(1) follows by Theorem 7
(2) follows by Theorem 7, and (1)
(3) Gallin [4] provides an interpretation of Montague IL [14] into TY2.
Suitable interpretation can be given directly in Lλ

ar (Lλ
r).

Placement of Lλ
ar in a class of type theories

Montague IL ⊊ Gallin TY2 ⊊ Moschovakis Lλ
ar ⊊ Moschovakis Lλ

r (29)

31 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Pure Quantifiers
Generalised Quantifiers, Algorithmic Patterns, Ambiguity, Underspecification
Definite Descriptors with Determiner “the”
Conjuncts and Coordination

Generalised Two-Argument Quantifiers: Q :
(
(ẽ → t̃) →

(
(ẽ → t̃) → t̃

))
some, every render−−−→ some, every ∈ Consts[(̃e→t̃)→((̃e→t̃)→t̃)] (30)

[someDet cubeN]NP
render−−−→ some(cube) : ((ẽ→ t̃)→ t̃) (31)
⇒cf

[
some(d) where { d := cube }

]
(32)

Some cube is large render−−−→ A0/A1/A2 (options) (33a)
A0 ≡

(
some(cube)

)
(large0) : t̃ typical λ-term (33b)

⇒cf some(p1)(p2) where {p1 := cube, p2 := large0}︸ ︷︷ ︸
recursion term

(33c)

A1 ≡ some(p1)(p2) where {p1 := cube, p2 := large(p1)} (33d)
A2 ≡ Q(p1)(p2)︸ ︷︷ ︸

alg. pattern

where {Q := some, p1 := cube, p2 := large(p1)︸ ︷︷ ︸
instantiations of memory

}

(33e)
Alternatives: Q := every , Q := one, Q := two, Q := most , etc.
No explicit terms are algorithmically equivalent to A1 and A2, by Th. 7.

32 / 59

[K [is [largerAdj than

[someDet numberN]NP]AdjP]vp]S
render−−−→ A

(34a)

A ≡
[
λy

[[
some(number)

](
λxd larger(xd)(y)

)]]
(K)⇒ . . . (34b)

⇒
[
λ(yk)

(
some

(
d′(yk)

)(
h(yk)

))
where

{ d′ := λ(yk)number ,

h := λ(yk)λ(xd)larger(xd)(yk) }
]
(K)

(34c)

⇒cf cf(A) ≡ (34d)[
λ(yk)

(
some

(
d′(yk)

)
(h(yk))

)]
(k) where

{h := λ(yk)λ(xd)larger(xd)(yk),

d′ := λ(yk)number , k := K }

(34e)

⇒γ∗
[
λ(yk)some(d)

(
h(yk)

)]
(k) where

{h := λ(yk)λ(xd)larger(xd)(yk),

d := number , k := K }
(34f)

[K [is [largerAdj than

[someDet numberN]NP]AdjP]vp]S
render−−−→ A3

(35a)

A3 ≡
[
λyk

[[
Q(number)

](
λxd larger(xd)(yk)

)
where {

Q := some}
]]
(K)⇒ . . .

(35b)

⇒
[
λ(yk)

(
Q
(
d′(yk)

)(
h(yk)

))
where

{Q := some, d′ := λ(yk)number ,

h := λ(yk)λ(xd)larger(xd)(yk) }
]
(K)

(35c)

⇒cf cf(A) ≡ (35d)[
λ(yk)

(
Q
(
d′(yk)

)
(h(yk))

)]
(k) where

{Q := some, h := λ(yk)λ(xd)larger(xd)(yk),

d′ := λ(yk)number , k := K }

(35e)

⇒γ∗
[
λ(yk)Q(d)

(
h(yk)

)]
(k) where

{Q := some, h := λ(yk)λ(xd)larger(xd)(yk),

d := number , k := K }
(35f)

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Pure Quantifiers
Generalised Quantifiers, Algorithmic Patterns, Ambiguity, Underspecification
Definite Descriptors with Determiner “the”
Conjuncts and Coordination

de dicto and de re renderings of quantifiers shared algorithmic pattern

Every cube is larger than some dodeca render−−−→ (de dicto)
R3 where {R3 := every(p)(R2), (36a)

R2 := λ(x2)some(b)(R1(x2)), (36b)
R1 := λ(x2)λ(x1)larger(x1)(x2), (36c)
p := cube, b := dodeca} (36d)

Every cube is larger than some dodeca render−−−→ (de re)
R3 where {R3 := some(b)(R1), (37a)

R1 := λ(x1)every(p)(R2(x1)), (37b)
R2 := λ(x1)λ(x2)larger(x1)(x2), (37c)
p := cube, b := dodeca} (37d)

35 / 59

de dicto and de re renderings of quantifiers: more explicit algorithmic pattern

de dicto term S21

S21 ≡ R3 where {R3 := Q2(R2), (38a)
R2 := λ(x2)Q1(R

1
1(x2)), (38b)

R1
1 := λ(x2)λ(x1)h(x1)(x2), (38c)

Q1 := q1(d1), Q2 := q2(d2), (38d)
q2 := every , d2 := cube, (38e)
q1 := some, d1 := dodeca, h := larger } (38f)

de re term S12

S12 ≡ R3 where {R3 := Q1(R1), (39a)
R1 := λ(x1)Q2(R

1
2(x1)), (39b)

R1
2 := λ(x1)λ(x2)h(x1)(x2), (39c)

Q1 := q1(d1), Q2 := q2(d2), (39d)
q2 := every , d2 := cube, (39e)
q1 := some, d1 := dodeca, h := larger } (39f)

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Pure Quantifiers
Generalised Quantifiers, Algorithmic Patterns, Ambiguity, Underspecification
Definite Descriptors with Determiner “the”
Conjuncts and Coordination

Constrained Underspecified Terms

U ≡ R3 where { l1 := Q1(R1), l2 := Q2(R2), (40a)
Q1 := q1(d1), Q2 := q2(d2), (40b)
q1 := some, q2 := every , (40c)
h := larger , d1 := dodeca, d2 := cube } (40d)

s.t. {Qi binds the i-th argument of h, (40e)
R3 binds (dominates) each Qi (i = 1, 2) } (40f)

U is underspecified (per se), but restricted:
R3, Ri(i = 1, 2) are free, restricted recursion variables

any of its specifications have to satisfy the constraints

37 / 59

de dicto rendering of the quantifiers after specification of the underspecified pattern U

U can be specified to de dicto term:

U21 ≡ R3 where {R3 := l2, l2 := Q2(R2), (41a)
R2 := λ(x2)l

1
1(x2), l

1
1 := λ(x2)Q1(R

1
1(x2)), (41b)

R1
1 := λ(x2)λ(x1)h(x1)(x2), (41c)

Q1 := q1(d1), Q2 := q2(d2), (41d)
q2 := every , d2 := cube, (41e)
q1 := some, d1 := dodeca, h := larger } (41f)

U21 can be simplified to the similar, not algorithmically synonymous term:

S21 ≡ R3 where {R3 := Q2(R2), (42a)
R2 := λ(x2)Q1(R

1
1(x2)), (42b)

R1
1 := λ(x2)λ(x1)h(x1)(x2), (42c)

Q1 := q1(d1), Q2 := q2(d2), (42d)
q2 := every , d2 := cube, (42e)
q1 := some, d1 := dodeca, h := larger } (42f)

de re rendering of the quantifiers after specification of the underspecified pattern U

U can be specified to the de re term:

U12 ≡ R3 where {R3 := l1, l1 := Q1(R1), (43a)
R1 := λ(x1)l

1
2(x1), l

1
2 := λ(x1)Q2(R

1
2(x1)), (43b)

R1
2 := λ(x1)λ(x2)h(x1)(x2), (43c)

Q1 := q1(d1), Q2 := q2(d2), (43d)
q2 := every , d2 := cube, (43e)
q1 := some, d1 := dodeca, h := larger } (43f)

U12 can be simplified to the similar, not algorithmically synonymous term:

S12 ≡ R3 where {R3 := Q1(R1), (44a)
R1 := λ(x1)Q2(R

1
2(x1)), (44b)

R1
2 := λ(x1)λ(x2)h(x1)(x2), (44c)

Q1 := q1(d1), Q2 := q2(d2), (44d)
q2 := every , d2 := cube, (44e)
q1 := some, d1 := dodeca, h := larger } (44f)

Logical Forms of Definite Descriptions with the Determiner “the”

Φ ≡ The cube is large (45)

First Order Logic (FOL) A

Φ
render−−−→ A ≡ ∃x

[
∀y(cube(y)↔ x = y)︸ ︷︷ ︸

uniqueness

∧ isLarge(x)
]

(46a)

S ≡ ∃x
[
∀y(P (y)↔ x = y)︸ ︷︷ ︸

uniqueness

∧ Q(x)
]

(46b)

In FOL, A in (46a) has the following features:
Existential quantification as the direct, topmost predication
Uniqueness of the existing entity
There is no referential force to the object denoted by the descriptor
NP: [the cube]np

There is no compositional analysis, i.e., no “derivation”, of A from
the components of Φ

Higher Order Logic (HOL): Henkin (1950) and Mostowski (1957)
a significant, positive step; but lost referential force

the render−−−→ T ≡
[
λPλQ

[
∃x

[
∀y(P (y)↔ x = y)︸ ︷︷ ︸

uniqueness

∧ Q(x)
]]]

(47a)

the cube render−−−→ C ≡ T (cube)

C ≡
[
λPλQ

[
∃x

[
∀y(P (y)↔ x = y)︸ ︷︷ ︸

uniqueness

∧ Q(x)
]]]

(cube) (47b)

|=| D ≡ λQ
[
∃x

[
∀y(cube(y)↔ x = y)︸ ︷︷ ︸

uniqueness

∧ Q(x)
]]

(47c)

(fr. (47b) by β-reduction)

Φ ≡ The cube is large render−−−→ B ≡ D(isLarge) (48a)

B ≡
[
λQ

[
∃x

[
∀y(cube(y)↔ x = y)︸ ︷︷ ︸

uniqueness

∧ Q(x)
]]]

(isLarge) (48b)

|=| ∃x
[
∀y(cube(y)↔ x = y)︸ ︷︷ ︸

uniqueness

∧ isLarge(x)
]

(48c)

(fr. (48b) by β-reduction)

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Pure Quantifiers
Generalised Quantifiers, Algorithmic Patterns, Ambiguity, Underspecification
Definite Descriptors with Determiner “the”
Conjuncts and Coordination

Example: rendering of the definite article “the” Option 1

Rendering the definite article “the” to a constant:

the render−−−→ the ∈ Consts((̃e→ t̃)→ ẽ) (49)

together with the following denotation of the constant the, requiring
“uniqueness” of the denoted object:

[(
den(the)

)
(g)

]
(p̄)(s0) =



y, if y is the unique y ∈ Te,
for which p̄(s 7→ y)(s0) = 1

er, otherwise
i.e., there is no unique entity
that has the property p̄ in s0

(50)

for every p̄ ∈ T(̃e→ t̃) and every s0 ∈ Ts

There are other possibilities for rendering the definite article “the”, e.g.,
see Loukanova [10].

42 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Pure Quantifiers
Generalised Quantifiers, Algorithmic Patterns, Ambiguity, Underspecification
Definite Descriptors with Determiner “the”
Conjuncts and Coordination

Option 3: the definite determiner “the” and descriptors: Underspecification

We can render “the” to A1 or cf(A1), underspecified for p:

the render−−−→ A1 ≡
(
q s.t. { unique(p)(q) }

)
: ẽ (51a)

the render−−−→ cf(A1) ≡
(
q s.t. {U }

)
where {U := unique(p)(q) } (51b)

p ∈ RecV(̃e→ t̃), q ∈ RecV ẽ (51c)

q is the object, whoever it turns to be, by having the property
unique(p), by unique(p)(q)

the cube render−−−→ cf(A2) : ẽ (52a)
A2 ≡

(
q s.t. { unique(p)(q) }

)
where { p := cube } (52b)

⇒cf cf(A2) ≡
(
q s.t. {U }

)
where {U := unique(p)(q),

p := cube }
(52c)

by (st1), (head), from (52b)
43 / 59

“the” and definite descriptors in predicative sentences Option 3

The cube is large render−−−→ cf(A3) : t̃ (53a)

A3 ≡ large(p)
((

q s.t. { unique(p)(q) }
)
where { p := cube }

)
(53b)

⇒ large(p)(Q) where {
Q :=

[(
q s.t. { unique(p)(q) }

)
where { p := cube }

]
}

(53c)

by (ap), from (53b)
⇒cf cf(A3) ≡ large(p)(Q) where {Q := (q s.t. {U }),

U := unique(p)(q), p := cube }
(53d)

by (st1), (wh-comp), (B-S), from (52c), (53c)

Algorithmic Pattern: definite descriptors in predicative statements: Opt3

A ≡ L(Q) where {Q := (q s.t. {U }), U := unique(p)(q) } (54a)
p, q, L ∈ FreeV(A), p ∈ RecV(̃e→ t̃), q ∈ RecV ẽ, (54b)
Q ∈ RecV ẽ, U ∈ RecV t̃, L ∈ RecV(̃e→ t̃) (54c)

Example: the definite descriptors as a direct reference by named entities Option 4-5

The number n is odd render−−−→ cf(A4) : t̃ (55a)

A4 ≡ isOdd
((

q s.t. { unique(N)(q), p(q) }
)
where {

q := n, p := number , N := named -n }
) (55b)

⇒cf cf(A4) ≡ isOdd(Q) where {Q :=
(
q s.t. {U,C }

)
,

U := unique(N)(q), C := p(q),

q := n, p := number , N := named -n }
(55c)

direct reference, by assignment; uniqueness and existence are
consequences

The number n is large render−−−→ cf(A5) : t̃ (56a)

A5 ≡ isOdd
((

q s.t. { p(q) }
)
where {

q := n, p := number }
) (56b)

⇒cf isOdd(Q) where {Q :=
(
q s.t. {C }

)
, C := p(q),

q := n, p := number }
(56c)

Predication via Coordination: e.g., a class of coordinated Vs, VPs, etc.

[Φj]np
[
[ΘL and ΨH] [Ww]np

]
vp (57a)

render−−−→ λxj

[
λyw

(
L(xj)(yw) ∧H(xj)(yw)

)
(w)

]
(j)︸ ︷︷ ︸

algorithmic pattern with memory parameters L, H, w, j

(57b)

[The cube]j [is larger than and is next to [[its]j predecessor]w] render−−−→ A
(58)

A ≡ λxj

[
λyw

(
larger(yw)(xj) ∧ nextTo(yw)(xj)

)
(predecessor(xj))

]
(the(cube))

(59a)

⇒γ∗ λxj

[
λyw

(
L′′(xj)(yw) ∧H ′′(xj)(yw)

)
(w′(xj))

]
(j)︸ ︷︷ ︸

algorithmic pattern with memory parameters L′′, H′′, w′, j

(59b)

where {L′′ := λxjλyw larger(yw)(xj), (59c)
H ′′ := λxjλyw nextTo(yw)(xj),

w′ := λxjpredecessor(xj), j := the(c), c := cube︸ ︷︷ ︸
instantiations of memory L′′, H′′, w′, j

}

Conjunction Proposition vs Predication via VP

The sentence (60a)–(60b) is a conjunction of propositions, i.e.,
propositional conjunction

The computational semantics of (60a)–(60b) can be represented by
cfγ*(B), in (61a)–(61b):

[The cube]j is larger than [[its]j predecessor]w (60a)

and [it]j is next to [it]w render−−−→ B (60b)

B ≡
[
larger(w)(j) ∧ nextTo(w)(j)

]
where {

j := the(cube), w := predecessor(j) }
(61a)

⇒cfγ∗

[
L ∧H

]
where {L := larger(w)(j), H := nextTo(w)(j),

w := predecessor(j),

j := the(c), c := cube }
(61b)

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Computational Syntax-Semantics of NL by using Lλ
ar in GCBLG

For syntax-semantics interfaces of Natural Language (NL), I employ:
Generalised Constraint-Based Lexicalized Grammar (GCBLG), see [7]
GCBLG covers a variety of computational grammars, by representing
major, common syntactic characteristics of a class of approaches to
computational grammar, e.g.:

Head-Driven Phrase Structure Grammar (HPSG) [3]

Lexical Functional Grammar (LFG) [1]

Categorial Grammar (CG) [2, 11]

Grammatical Framework (GF) [5] (tentatively)

48 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Computational Syntax-Semantics of NL by using Lλ
ar in GCBLG

Generalised Constraint-Based Lexicalized Grammar (GCBLG) covers
major syntactic categories of natural language, by linguistically motivated
generalizations.

The syntactic information is distributed among a hierarchy of types

typed feature-value descriptions: Feature-Value Logics;
Attribute-Value (ATV) Matrices

The semantic representation in syntax-semantics composition and
interface, is by the feature sem and its recursive values

sem has typed values that encode recursion terms of Lλ
ar,

alternatively, of DTTSitInfo

Efficient and effective, computational rendering of NL expressions to
γ∗-canonical forms, see Loukanova [6, 9, 8]

49 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Computational Syntax-Semantics of NL by using Lλ
ar in GCBLG

Computational Grammar with Syntax-Semantics and Underspecification
For a given NL expression ϕ, its grammar analysis Φ, includes
syntax-semantics interface, throughout its constituents

Φ
render−−−→ A ≡ cfγ(A) (62)

50 / 59

(n0) S

syn

val
[

spr 〈 〉
comps 〈 〉

]
synsem

[
R3 rBind l1, R3 rBind l2,
Q1 rBind p1, R1 rBind p1, Q2 rBind p2, R2 rBind p2

]

sem



l-type t̃

term



T

t-head R3

where { l1 := Q1(R1), l2 := Q2(R2),
Q1 := q1(d1), q1 := some, d1 := dodeca,
Q2 := q2(d2), q2 := every , d2 := cube,
R0 := h(p1)(p2), h := larger }







(n2) npQ2

2



syn


head 4

val
[

comps 〈 〉
spr 〈 〉

]

sem


l-type ((ẽ→ t̃)→ t̃)

term


Q2

t-head q2(d2)

where { q2 := every,
d2 := cube }







3



syn


head

[
det

]
val

[
spr 〈 〉
comps 〈 〉

]


sem

term
[

t-head every

where { }

]



every

H



syn


head 4

[
noun

]
val

spr
〈

3

〉
comps 〈 〉




sem


l-type (ẽ→ t̃)

term
[

t-head cube

where { }

]



cube

(n1) VP

syn


head

[
verb

]
val

[
spr 〈 2Q2

〉
comps 〈 〉

]


synsem
[
(Q2 rBind p2),
(Q1 rBind p1), (R1 rBind p1)

]

sem



l-type t̃

term


T 0

t-head l1
where { l1 := Q1(R1),

Q1 := q1(d1), q1 := some, d1 := dodeca,
R0 := h(p1)(p2), h := larger }







(n3) Pred-be+AdjP

syn


head

[
verb

]
val

[
spr 〈 2Q2〉
comps 〈 1Q1

〉

]


synsem
[
Q1 rBind p1, Q2 rBind p2,

]

sem



sem-larger
l-type t̃

h : (ẽ→ (ẽ→ t̃))

term

R0

t-head h(p1)(p2)

where { h := larger }







is larger than

(n5) NPQ1

1



syn


head 5

val
[

comps 〈 〉
spr 〈 〉

]

sem


l-type (ẽ→ t̃)→ t̃

term


Q1

t-head q1(d1)

where { q1 := some,
d1 := dodeca }







some dodeca

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Motivation for Type Theory Lλ
ar and Outlook

Lλ
ar provides Computational Semantics with:

greater semantic distinctions than type-theoretic semantics by
λ-calculi, e.g., Montagovian grammars

Lλ
ar provides Parametric Algorithms

Parameters can be instantiated depending on:
classes and sets of specific names, NPs, verbs, properties, relations,
etc.
representing major semantic ambiguities and underspecification [6],
at the object level of its formal language, without meta-language
variables

Lλ
ar with logical operators and pure quantifiers can be used for:

proof-theoretic computational semantics and reasoning
inferences of semantic information
Canonical forms can be used by automatic provers and proof
assistants

Looking Forward!
52 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Outlook1: Development of Computational Theories and Applications

Generalised Computational Grammar: CompSynSem interfaces in
NL, HL (human language)

Hierarchical lexicon with morphological structure and lexical rules
Syntax of NL expressions (phrasal and grammatical dependences)
Syntax-semantics inter-relations in lexicon and phrases

A Big Picture — simplified and approximated, but realistic:
Algorithmic CompSynSem of Human Language (HL)

HL Syn ⇐⇒ Lλ
ar /L

λ
r /SitI

Reduction Calc−−−−−−−−→ Canonical Forms︸ ︷︷ ︸
Canonical Computations

=⇒ Denotations

︸ ︷︷ ︸
(Canonically) Algorithmic CompSynSem Interfaces

(I’ve done quite a lot of it, but still a lot to do!)
53 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Outlook2: Applications to Human / Natural Language Processing (NLP)

Translations via Algorithmic Syntax-Semantics Interfaces (CompSynSem)
Human Languages, Ontologies, and Lλ

ar / SitI

Lexicon of L0 ⇐⇒ Syn of L0
render←−−−→

render−1
Lλ
ar /SitI Canonical Terms

↓↑
possible

Data / Ontologies / Tree Banks, etc. render←−−−→
render−1

modifications

of the terms
↓↑

{Lexicon of Li ⇐⇒ Syn of Li
render←−−−→

render−1
Lλ
ar /SitI Canonical Terms

| 1 ≤ i ≤ n}

54 / 59

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Some References I

Bresnan, J.: Lexical-Functional Syntax.
Blackwell Publishers, Oxford (2001)

Buszkowski, W.: Mathematical Linguistics and Proof Theory.
In: J. van Benthem, A. ter Meulen (eds.) Handbook of Logic and
Language, pp. 683–736. North-Holland, Amsterdam (1997).
DOI https://doi.org/10.1016/B978-044481714-3/50016-3.
URL https://www.sciencedirect.com/science/article/pii/
B9780444817143500163
DELPH-IN: Deep Linguistic Processing with HPSG (DELPH-IN)
(2018, edited).
URL http://moin.delph-in.net.
Accessed 20-Aug-2023

55 / 59

https://www.sciencedirect.com/science/article/pii/B9780444817143500163
https://www.sciencedirect.com/science/article/pii/B9780444817143500163
http://moin.delph-in.net

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Some References II

Gallin, D.: Intensional and Higher-Order Modal Logic: With
Applications to Montague Semantics.
North-Holland Publishing Company, Amsterdam and Oxford, and
American Elsevier Publishing Company (1975).
URL https://doi.org/10.2307/2271880

The Grammatical Framework GF.
http://www.grammaticalframework.org.
Accessed 20-Aug-2023
Loukanova, R.: Relationships between Specified and Underspecified
Quantification by the Theory of Acyclic Recursion.
ADCAIJ: Advances in Distributed Computing and Artificial
Intelligence Journal 5(4), 19–42 (2016).
DOI 10.14201/ADCAIJ201654.
URL https://doi.org/10.14201/ADCAIJ2016541942

56 / 59

https://doi.org/10.2307/2271880
http://www.grammaticalframework.org
https://doi.org/10.14201/ADCAIJ2016541942

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Some References III

Loukanova, R.: An Approach to Functional Formal Models of
Constraint-Based Lexicalized Grammar (CBLG).
Fundamenta Informaticae 152(4), 341–372 (2017).
DOI 10.3233/FI-2017-1524.
URL https://doi.org/10.3233/FI-2017-1524

Loukanova, R.: Gamma-Reduction in Type Theory of Acyclic
Recursion.
Fundamenta Informaticae 170(4), 367–411 (2019).
URL https://doi.org/10.3233/FI-2019-1867

57 / 59

https://doi.org/10.3233/FI-2017-1524
https://doi.org/10.3233/FI-2019-1867

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Some References IV

Loukanova, R.: Gamma-Star Canonical Forms in the Type-Theory of
Acyclic algorithms.
In: J. van den Herik, A.P. Rocha (eds.) Agents and Artificial
Intelligence, Lecture Notes in Computer Science, vol. 11352, pp.
383–407. Springer International Publishing, Cham (2019).
URL https://doi.org/10.1007/978-3-030-05453-3_18

Loukanova, R.: Restricted Computations and Parameters in
Type-Theory of Acyclic Recursion.
ADCAIJ: Advances in Distributed Computing and Artificial
Intelligence Journal 12(1), 1–40 (2023).
URL https://doi.org/10.14201/adcaij.29081

58 / 59

https://doi.org/10.1007/978-3-030-05453-3_18
https://doi.org/10.14201/adcaij.29081

Outline
A Glimpse of Approaches to Formal and Computational Grammar

Syntax and Denotational Semantics of Lλ
ar

Reduction Calculi, Canonical Forms, and Algorithmic Semantica
Parametric Algorithmic Patterns

Computational Syntax-Semantics of NL via Lλ
ar

Some References V

Moortgat, M.: Categorial Type Logics.
In: J. van Benthem, A. ter Meulen (eds.) Handbook of Logic and
Language, pp. 93–177. Elsevier, Amsterdam (1997).
URL https://doi.org/10.1016/B978-044481714-3/50005-9

Moschovakis, Y.N.: The formal language of recursion.
Journal of Symbolic Logic 54(4), 1216–1252 (1989).
URL https://doi.org/10.1017/S0022481200041086

Moschovakis, Y.N.: A Logical Calculus of Meaning and Synonymy.
Linguistics and Philosophy 29(1), 27–89 (2006).
URL https://doi.org/10.1007/s10988-005-6920-7

Thomason, R.H. (ed.): Formal Philosophy: Selected Papers of
Richard Montague.
Yale University Press, New Haven, Connecticut (1974)

59 / 59

https://doi.org/10.1016/B978-044481714-3/50005-9
https://doi.org/10.1017/S0022481200041086
https://doi.org/10.1007/s10988-005-6920-7

	Outline
	A Glimpse of Approaches to Formal and Computational Grammar
	Overview of Approaches to Computational Semantics

	Syntax and Denotational Semantics of LAR
	Syntax of LAR
	Denotational Semantics of LAR

	Reduction Calculi, Canonical Forms, and Algorithmic Semantica
	gamma-Reduction
	Canonical Forms and Algorithmic Semantics
	Algorithmic Equivalence
	Expressiveness of LAR / LR

	Parametric Algorithmic Patterns
	Pure Quantifiers
	Generalised Quantifiers, Algorithmic Patterns, Ambiguity, Underspecification
	Definite Descriptors with Determiner ``the''
	Conjuncts and Coordination

	Computational Syntax-Semantics of NL via LAR

