Rendering Natural Language of Mathematical Texts into Formal Language

Roussanka Loukanova

Institute of Mathematics and Informatics (IMI) Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria

NatFoM: Workshop on Natural Formal Mathematics, Cambridge, 6 September 14:00-18:00

Joint WG4-WG5 meeting, Cambridge, UK, 6-8 September 2023 https://europroofnet.github.io/cambridge-2023

Outline

(1) A Glimpse of Approaches to Formal and Computational Grammar

- Overview of Approaches to Computational Semantics
(2) Syntax and Denotational Semantics of $L_{a r}^{\lambda}$
- Syntax of $L_{a r}^{\lambda}$
- Denotational Semantics of $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{\text {rar }}^{\lambda}$
(3) Reduction Calculi, Canonical Forms, and Algorithmic Semantica
- $\gamma *$-Reduction
- Canonical Forms and Algorithmic Semantics
- Algorithmic Equivalence
- Expressiveness of $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{r}^{\lambda}$
(4) Parametric Algorithmic Patterns
- Pure Quantifiers
- Generalised Quantifiers, Algorithmic Patterns, Ambiguity, Underspecification
- Definite Descriptors with Determiner "the"
- Conjuncts and Coordination
(5) Computational Syntax-Semantics of NL via $L_{\text {ar }}^{\lambda}$

Approaches to formal and computational syntax of natural language (NL)
All of the following approaches are at least partly active CFGs, Phrase Structure Grammars (PSG): initiated by Chomsky 1950s Transformational Grammars: initiated by Chomsky 1955, 1957, with versions to the present
Generative Semantics: 1967-74 Lakoff, McCawley, Postal, Ross Government and Binding Theory (GBT): initiated by Chomsky 1981 Principles and Parameters initiated by Chomsky 1981 with GBT Minimalist Program initiated by Chomsky 1995 (major work) Constraint-Based, Lexicalist Approaches

- GPSG: Gazdar et al. 1979-87 to the present
- LFG: 1979 to the present
- HPSG: 1984 to the present

Categorial Grammars Ajdukiewicz 1935 to the present
Dependency Grammar (DG): active
Grammatical Framework (GF) Multi-Lingual, Chalmers, 1998, Aarne Ranta (25 years on, in Mar 2023) (open development)

- Categorial Grammars: Ajdukiewicz 1935 - formal logic for syntax for NL to the present, with initiations for syntax-semantics
- Type-Theoretical Grammars in many varieties
- Montague Grammars: started by Montague 1970 to the present
- Situation Theory and Situation Semantics, Jon Barwise 1980ies Inspired partiality in computational syntax of LFG and HPSG; Since start HPSG approaches, 1984, have been using Situation Semantics in syntax-semantics interfaces;
- Minimal Recursion Semantics in HPSG since 2000-2002 MRS is a technique as a form of Situation Semantics with major characteristics of Moschovakis recursion
- Moschovakis [12] Formal Language of full recursion, untyped; Typed acyclic recursion, introduced by Moschovakis [13] (2006)
- Algorithmic Dependent-Type Theory of Situated Information (DTTSitInfo): situated data including context assessments (open)
- Other Approaches to Computational Semantics many combinations and variants of FOL, e.g., Prolog, Definite Clause Grammars, etc.

Algorithms for computing denotations of terms

Algorithmic syntax-semantics of $\mathrm{L}_{\mathrm{ar}}^{\lambda}\left(\mathrm{L}_{r}^{\lambda}\right)$ and Natural Language

$\underbrace{\text { Computational Syntax of } N L} \xrightarrow{\text { render }} \mathrm{L}_{\mathrm{ar}}^{\lambda}$
Computational Grammar
$\underbrace{\text { Computational Syntax of NL } \xrightarrow{\text { render }} \mathrm{L}_{\text {ar }}^{\lambda}}$
Computational Grammar: Syntax-Semantics Interface

Development of Type-Theory of (Acyclic) Algorithms, L_{r}^{λ} ($\mathrm{L}_{\text {ar }}^{\lambda}$)
Placement of $L_{a r}^{\lambda}$ in a class of type theories
Montague $\mathrm{IL} \subsetneq$ Gallin $\mathrm{TY}_{2} \subsetneq$ Moschovakis $\mathrm{L}_{\mathrm{ar}}^{\lambda} \subsetneq$ Moschovakis L_{r}^{λ}

- Type-Theory of (Acyclic) Algorithms, $\mathrm{L}_{r}^{\lambda}\left(\mathrm{L}_{\text {ar }}^{\lambda}\right)$: provides:
- a math notion of algorithm
- Computational Semantics of formal and natural languages
- $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{r}^{\lambda}$ is type theory of algorithms with acyclic / full recursion:
- Introduced by Moschovakis [13] (2006),
- Math development by motivations from NL, Loukanova [8, 9] (2019) and previously
- In the works presented here, I extend $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{r}^{\lambda}$ by incorporating
- logic operators, by logic constants of suitable types
- pure, logic quantifiers
- extended reduction calculus of $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{r}^{\lambda}$
- demonstrate (there is a math proof) that $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{r}^{\lambda}$ essentially extend classic λ-calculus, incl., for logic operators and pure quantifiers

Syntax of Type Theory of Algorithms (TTA): Types, Vocabulary

- Gallin Types (1975)

$$
\begin{equation*}
\tau::=\mathrm{e}|\mathrm{t}| \mathrm{s} \mid(\tau \rightarrow \tau) \tag{Types}
\end{equation*}
$$

- Abbreviations

$$
\begin{align*}
& \widetilde{\sigma} \equiv(\mathrm{s} \rightarrow \sigma), \quad \text { for state-dependent objects of type } \widetilde{\sigma} \tag{5a}\\
& \widetilde{\mathrm{e}} \equiv(\mathrm{~s} \rightarrow \mathrm{e}), \tag{5b}\\
& \widetilde{\mathrm{t}} \equiv(\mathrm{~s} \rightarrow \mathrm{t}), \quad \text { for statate-dependent entities } \tag{5c}\\
& \hline
\end{align*}
$$

- Typed Vocabulary, for all $\sigma \in$ Types

$$
\begin{align*}
& K_{\sigma}=\operatorname{Consts}_{\sigma}=\left\{c_{0}^{\sigma}, c_{1}^{\sigma}, \ldots\right\} \tag{6a}\\
& \wedge, \vee, \rightarrow \in \operatorname{Consts}_{(\tau \rightarrow(\tau \rightarrow \tau))}, \tau \in\{\mathrm{t}, \widetilde{\mathrm{t}}\} \tag{6b}\\
& \neg \in \operatorname{Consts}_{(\tau \rightarrow \tau)}, \tau \in\{\mathrm{t}, \widetilde{\mathrm{t}}\} \\
& \text { (logical constants) } \\
& \text { PureV }_{\sigma}=\left\{v_{0}^{\sigma}, v_{1}^{\sigma}, \ldots\right\} \\
& \operatorname{Rec}_{\sigma}=\operatorname{Memory}_{\sigma}=\left\{p_{0}^{\sigma}, p_{1}^{\sigma}, \ldots\right\} \\
& \mathrm{PureV}_{\sigma} \cap \operatorname{Rec}_{\sigma}=\varnothing, \quad \operatorname{Vars}_{\sigma}=\mathrm{PureV}_{\sigma} \cup \operatorname{Rec}_{\sigma} \\
& \text { (recursion variables) }
\end{align*} \text { (6e) }
$$

$$
\left.\begin{array}{rl}
\mathrm{A}: \equiv & \mathrm{c}^{\sigma}: \sigma\left|X^{\sigma}: \sigma\right| \mathrm{B}^{(\sigma \rightarrow \tau)}\left(\mathrm{C}^{\sigma}\right): \tau \mid \lambda\left(v^{\sigma}\right)\left(\mathrm{B}^{\tau}\right):(\sigma \rightarrow \tau) \\
& \mid \mathrm{A}_{0}^{\sigma_{0}} \text { where }\left\{p_{1}^{\sigma_{1}}:=\mathrm{A}_{1}^{\sigma_{1}}, \ldots, p_{n}^{\sigma_{n}}:=\mathrm{A}_{n}^{\sigma_{n}}\right\}: \sigma_{0} \\
& \left|\wedge\left(A_{2}^{\tau}\right)\left(A_{1}^{\tau}\right): \tau\right| \vee\left(A_{2}^{\tau}\right)\left(A_{1}^{\tau}\right): \tau \mid \rightarrow\left(A_{2}^{\tau}\right)\left(A_{1}^{\tau}\right): \tau \\
& \mid \neg\left(B^{\tau}\right): \tau \\
& \left|\forall\left(v^{\sigma}\right)\left(B^{\tau}\right): \tau\right| \exists\left(v^{\sigma}\right)\left(B^{\tau}\right): \tau \\
& \mid \mathrm{A}_{0}^{\sigma_{0}} \text { such that }\left\{\mathrm{C}_{1}^{\tau_{1}}, \ldots, \mathrm{C}_{m}^{\tau_{m}}\right\}: \sigma_{0}^{\prime} r \tag{7f}
\end{array} \text { (restrictor operator) }\right)
$$

- $c^{\tau} \in$ Consts $_{\tau}, \quad X^{\tau} \in \mathrm{PureV}_{\tau} \cup \operatorname{Rec}_{\tau}, \quad v^{\sigma} \in \mathrm{PureV}_{\sigma}$
- $\mathrm{B}, \mathrm{C} \in$ Terms, $\quad p_{i}^{\sigma_{i}} \in \mathrm{RecV}_{\sigma_{i}}, A_{i}^{\sigma_{i}} \in \mathrm{Terms}_{\sigma_{i}}, \mathrm{C}_{j}^{\tau_{j}} \in \mathrm{Terms}_{\tau_{j}}$
- $\ln (7 \mathrm{c})-(7 \mathrm{e}),(7 \mathrm{f}): \tau, \tau_{j} \in\{\mathrm{t}, \widetilde{\mathrm{t}}\}, \widetilde{\mathrm{t}} \equiv(\mathrm{s} \rightarrow \mathrm{t})$ (for propositions)
- Acyclicity Constraint (AC), for $\mathrm{L}_{\text {ar }}^{\lambda}$; without it, L_{r}^{λ} with full recursion
$\left\{p_{1}^{\sigma_{1}}:=A_{1}^{\sigma_{1}}, \ldots, p_{n}^{\sigma_{n}}:=A_{n}^{\sigma_{n}}\right\} \quad(n \geq 0)$ is acyclic iff
for some function rank: $\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow \mathbb{N}$
if $\quad p_{j} \in \operatorname{FreeV}\left(A_{i}\right)\left(p_{j}\right.$ occurs freely in $\left.A_{i}\right)$,
then $\operatorname{rank}\left(p_{i}\right)>\operatorname{rank}\left(p_{j}\right)$

Types of Restrictor Terms

In the restrictor term (7f) / (9),

$$
\begin{equation*}
A_{0}^{\sigma_{0}} \text { such that }\left\{C_{1}^{\tau_{1}}, \ldots, C_{n}^{\tau_{n}}\right\}: \sigma_{0}^{\prime} \tag{9}
\end{equation*}
$$

for each $i=1, \ldots, n$:

- $\tau_{i} \equiv \mathrm{t}$ (state independent truth values), or
- $\tau_{i} \equiv \tilde{t} \equiv(\mathbf{s} \rightarrow \mathbf{t})$ (state dependent truth values)

$$
\sigma_{0}^{\prime} \equiv\left\{\begin{array}{lc}
\sigma_{0}, & \text { if } \tau_{i} \equiv \mathrm{t}, \text { for all } i \in\{1, \ldots, n\} \tag{10a}\\
\sigma_{0} \equiv(\mathrm{~s} \rightarrow \sigma), & \text { if } \tau_{i} \equiv \widetilde{\mathrm{t}}, \text { for some } i \in\{1, \ldots, n\}, \text { and } \\
& \quad \text { for some } \sigma \in \text { Types, } \sigma_{0} \equiv(\mathrm{~s} \rightarrow \sigma) \\
\widetilde{\sigma_{0}} \equiv\left(\mathrm{~s} \rightarrow \sigma_{0}\right), & \text { if } \tau_{i} \equiv \widetilde{\mathrm{t}}, \text { for some } i \in\{1, \ldots, n\}, \text { and } \\
& \text { there is no } \sigma, \text { s.th. } \sigma_{0} \equiv(\mathrm{~s} \rightarrow \sigma)
\end{array}\right.
$$

Denotational Semantics of $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{\text {rar }}^{\lambda}$
A standard semantic structure is a tuple $\mathfrak{A}($ Consts $)=\langle\mathbb{T}, \mathcal{I}\rangle$ that satisfies the following conditions:

- $\mathbb{T}=\left\{\mathbb{T}_{\sigma} \mid \sigma \in\right.$ Types $\}$ is a frame of typed objects $\{0,1, e r\} \subseteq \mathbb{T}_{\mathrm{t}} \subseteq \mathbb{T}_{\mathrm{e}} \quad\left(e r_{\mathrm{t}} \equiv e r_{\mathrm{e}} \equiv e r \equiv\right.$ error $)$ $\mathbb{T}_{\mathrm{s}} \neq \varnothing$
(the domain of states) $\mathbb{T}_{\left(\tau_{1} \rightarrow \tau_{2}\right)}=\left(\mathbb{T}_{\tau_{1}} \rightarrow \mathbb{T}_{\tau_{2}}\right)=\left\{f \mid f: \mathbb{T}_{\tau_{1}} \rightarrow \mathbb{T}_{\tau_{2}}\right\} \quad$ (standard str.) $e r_{\sigma} \in \mathbb{T}_{\sigma}$, for every $\sigma \in$ Types (designated typed errors)
- \mathcal{I} : Consts $\longrightarrow \cup \mathbb{T}$ is a typed interpretation function: $\mathcal{I}(c) \in \mathbb{T}_{\sigma}$, for every $\mathrm{c} \in$ Consts $_{\sigma}$
- \mathfrak{A} is associated with the set of the typed variable valuations G :

$$
\begin{align*}
G=\{g \mid & g: \text { PureV } \cup \operatorname{Rec} \mathrm{V} \longrightarrow \bigcup \mathbb{T} \tag{11}\\
& \text { and, for every } \left.X \in \operatorname{Vars}_{\sigma}, \quad g(X) \in \mathbb{T}_{\sigma}\right\}
\end{align*}
$$

- Let's assume a given semantic structure \mathfrak{A}, and write den \equiv den ${ }^{\mathfrak{A}}$
- There is a unique function, called the denotation function: den ${ }^{\mathfrak{A}}:$ Terms $\longrightarrow\{f \mid f: G \longrightarrow \cup \mathbb{T}\}$ defined by recursion on the structure of the terms
(D1) (1) $\operatorname{den}(X)(g)=g(x)$, for every $X \in$ Vars
(2) $\operatorname{den}(\mathrm{c})(\mathrm{g})=\mathcal{I}$ (c), for every $\mathrm{c} \in$ Consts
(D2) $\operatorname{den}(A(B))(g)=\operatorname{den}(A)(g)(\operatorname{den}(B)(g))$
(D3) $\operatorname{den}(\lambda x(B))(g)(a)=\operatorname{den}(B)(g\{x:=a\})$, for every $a \in \mathbb{T}_{\tau}$
(D4) $\operatorname{den}\left(A_{0}\right.$ where $\left.\left\{p_{1}:=A_{1}, \ldots, p_{n}:=A_{n}\right\}\right)(g)=$ $\operatorname{den}\left(A_{0}\right)\left(g\left\{p_{1}:=\bar{p}_{1}, \ldots, p_{n}:=\bar{p}_{n}\right\}\right)$
where $\bar{p}_{i} \in \mathbb{T}_{\tau_{i}}$ are defined by recursion on $\operatorname{rank}\left(p_{i}\right)$:

$$
\overline{p_{i}}=\operatorname{den}\left(A_{i}\right)\left(g\left\{p_{k_{1}}:=\bar{p}_{k_{1}}, \ldots, p_{k_{m}}:=\bar{p}_{k_{m}}\right\}\right)
$$

given that $p_{k_{1}}, \ldots, p_{k_{m}}$ are all of the recursion variables $p_{j} \in\left\{p_{1}, \ldots, p_{n}\right\}$, s.t. $\operatorname{rank}\left(p_{j}\right)<\operatorname{rank}\left(p_{i}\right)$.
Intuitively:

- den $\left(A_{1}\right)(g), \ldots, \operatorname{den}\left(A_{n}\right)(g)$ are computed recursively, by $\operatorname{rank}\left(p_{i}\right)$, and stored in $p_{i}, 1 \leq i \leq n$
- the denotation den $\left(A_{0}\right)(g)$ may depend on the values stored in p_{1}, \ldots, p_{n}
(D5) (for the constants of the logic operators) ...

The Denotation of the Logic-Quantifiers Terms (continuation)
(D6b) Simplified version, without considering the erroneous cases of er
The denotation of the state-dependent, pure existential quantifier, for $\tau=\widetilde{\mathfrak{t}}, \quad \operatorname{den}^{\mathfrak{A}}\left(\exists\left(v^{\sigma}\right)\left(B^{\tau}\right)\right)(g): \mathbb{T}_{\mathrm{s}} \rightarrow \mathbb{T}_{\mathrm{t}}$ is such that:
for every state $s \in \mathbb{T}_{\mathrm{s}}$:

$$
\begin{equation*}
\left[\operatorname{den}^{\mathfrak{A}}\left(\exists\left(v^{\sigma}\right)\left(B^{\tau}\right)\right)(g)\right](s)=1(\text { true in } s) \tag{12b}
\end{equation*}
$$

iff there is $a \in \mathbb{T}_{\sigma}$, in the semantic domain \mathbb{T}_{σ}, such that:

$$
\begin{equation*}
\left[\operatorname{den}^{\mathfrak{A}}\left(B^{\tau}\right)(g\{v:=a\})\right](s)=1 \tag{12c}
\end{equation*}
$$

The Denotation Function for the Restrictor Terms (continuation)
(D7) For every $g \in G$, and every state $s \in \mathbb{T}_{\mathbf{s}}$:
Case 1: for all $i \in\{1, \ldots, n\}, C_{i} \in$ Terms $_{\mathrm{t}}$ (independent on states) For every $g \in G$:

$$
\operatorname{den}\left(A_{0}^{\sigma_{0}} \text { s.t. }\{\vec{C}\}\right)(g)= \begin{cases}\operatorname{den}\left(A_{0}\right)(g), & \text { if, for all } i \in\{1, \ldots, n\}, \\ & \operatorname{den}\left(C_{i}\right)(g)=1 \tag{13}\\ e r_{\sigma_{0}} & \text { if, for some } i \in\{1, \ldots, n\}, \\ & \operatorname{den}\left(C_{i}\right)(g)=0 \text { or } \\ & \operatorname{den}\left(C_{i}\right)(g)=e r\end{cases}
$$

Case 2: for some $i \in\{1, \ldots, n\}, C_{i}: \tilde{\mathrm{t}}$

$$
\begin{align*}
& \operatorname{den}\left(A_{0}^{\sigma_{0}} \text { s.t. }\{\vec{C}\}\right)(g)(s) \tag{14}\\
& \text { (} \operatorname{den}\left(A_{0}\right)(g)(s) \text {, if } \operatorname{den}\left(C_{i}\right)(g)=1 \text {, for all } i \text { s.th. } C_{i}: \mathrm{t} \text {, and } \\
& \operatorname{den}\left(C_{i}\right)(g)(s)=1 \text {, for all } i \text { s.th. } C_{i}: \tilde{\mathrm{t}} \text {, and } \\
& \sigma_{0} \equiv(\mathrm{~s} \rightarrow \sigma) \\
& =\left\{\operatorname{den}\left(A_{0}\right)(g), \quad \text { if } \operatorname{den}\left(C_{i}\right)(g)=1, \text { for all } i \text { s.th. } C_{i}: \mathrm{t}\right. \text {, and } \\
& \operatorname{den}\left(C_{i}\right)(g)(s)=1 \text {, for all } i \text { s.th. } C_{i}: \tilde{\mathrm{t}} \text {, and } \\
& \sigma_{0} \not \equiv(\mathrm{~s} \rightarrow \sigma) \text {, for all } \sigma \in \text { Types } \\
& \text { otherwise }
\end{align*}
$$

- $A \in$ Terms is explicit iff the operator where does not occur in A
- $A \in$ Terms is a λ-calculus term iff it is explicit and no recursion variable occurs in it

Definition (Immediate and Proper Terms)

- The set ImT of immediate terms is defined by recursion (15)

$$
\begin{equation*}
T: \equiv V\left|p\left(v_{1}\right) \ldots\left(v_{m}\right)\right| \lambda\left(u_{1}\right) \ldots \lambda\left(u_{n}\right) p\left(v_{1}\right) \ldots\left(v_{m}\right) \tag{15}
\end{equation*}
$$

for $V \in$ Vars, $p \in \operatorname{Rec} \mathrm{~V}, u_{i}, v_{j}, \in \mathrm{PureV}$,
$i=1, \ldots, n, \quad j=1, \ldots, m(m, n \geq 0)$

- Every $A \in$ Terms that is not immediate is proper

$$
\begin{equation*}
\operatorname{PrT}=(\text { Terms }-\operatorname{ImT}) \tag{16}
\end{equation*}
$$

Immediate terms do not carry algorithmic sense: $\operatorname{den}\left(p\left(v_{1}\right) \ldots\left(v_{m}\right)\right)$ is by variable valuation, in memory $p \in \operatorname{RecV}$.

Definition (Congruence Relation, informally)

The congruence relation is the smallest equivalence relation (i.e., reflexive, symmetric, transitive) between $\mathrm{L}_{\mathrm{ar}}{ }^{\lambda}$-terms, $A \equiv_{\mathrm{c}} B$, that is closed under:
(1) operators of term-formation:

- application
- λ-abstraction
- logic operators
- pure, logic quantifiers
- acyclic recursion
- restriction
(2) renaming bound variables (pure and recursion), without causing variable collisions
(0) re-ordering of the assignments within the acyclic sequences of assignments in the recursion terms
(re-ordering of the restriction sub-terms in the restriction terms
[Congruence]

$$
\text { If } A \equiv_{c} B \text {, then } A \Rightarrow B
$$

[Transitivity] If $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$
[Compositionality]

- If $A \Rightarrow A^{\prime}$ and $B \Rightarrow B^{\prime}$, then $A(B) \Rightarrow A^{\prime}\left(B^{\prime}\right)$
- If $A \Rightarrow B$, and $\xi \in\{\lambda, \exists, \forall\}$, then $\xi(u)(A) \Rightarrow \xi(u)(B)$
- If $A_{i} \Rightarrow B_{i}(i=0, \ldots, n)$, then
A_{0} where $\left\{p_{1}:=A_{1}, \ldots, p_{n}:=A_{n}\right\}$
$\Rightarrow B_{0}$ where $\left\{p_{1}:=B_{1}, \ldots, p_{n}:=B_{n}\right\}$
- If $A_{0} \Rightarrow B_{0}$ and $C_{i} \Rightarrow R_{i}(i=0, \ldots, n)$, then
A_{0} such that $\left\{C_{1}, \ldots, C_{n}\right\}$
(st-comp)
$\Rightarrow B_{0}$ such that $\left\{R_{1}, \ldots, R_{n}\right\}$

Reduction Rules

[Head Rule] Given that $p_{i} \neq q_{j}$ and no p_{i} occurs freely in any B_{j},

$$
\begin{aligned}
& \left(A_{0} \text { where }\{\vec{p}:=\vec{A}\}\right) \text { where }\{\vec{q}:=\vec{B}\} \\
\Rightarrow & A_{0} \text { where }\{\vec{p}:=\vec{A}, \vec{q}:=\vec{B}\}
\end{aligned}
$$

[Bekič-Scott Rule] Given that $p_{i} \neq q_{j}$ and no q_{i} occurs freely in any A_{j}

$$
\begin{align*}
& A_{0} \text { where }\left\{p:=\left(B_{0} \text { where }\{\vec{q}:=\vec{B}\}\right), \vec{p}:=\vec{A}\right\} \tag{B-S}\\
\Rightarrow & A_{0} \text { where }\left\{p:=B_{0}, \vec{q}:=\vec{B}, \vec{p}:=\vec{A}\right\}
\end{align*}
$$

[Recursion-Application Rule] Given that no p_{i} occurs freely in B,

$$
\begin{align*}
& \left(A_{0} \text { where }\{\vec{p}:=\vec{A}\}\right)(B) \tag{recap}\\
\Rightarrow & A_{0}(B) \text { where }\{\vec{p}:=\vec{A}\}
\end{align*}
$$

[Application Rule] Given that $B \in \operatorname{PrT}$ is a proper term, and p is fresh, $p \in[\operatorname{Rec} \mathrm{~V}-(\mathrm{FV}(A(B)) \cup \mathrm{BV}(A(B)))]$,

$$
\begin{equation*}
A(B) \Rightarrow[A(p) \text { where }\{p:=B\}] \tag{ap}
\end{equation*}
$$

[λ and Quantifiers rules] Let $\xi \in\{\lambda, \exists, \forall\}$.
Given fresh $p_{i}^{\prime} \in[\operatorname{Rec} \mathrm{V}-(\mathrm{FV}(A) \cup \mathrm{BV}(A))], i=1, \ldots, n$, for $A \equiv A_{0}$ where $\left\{p_{1}:=A_{1}, \ldots, p_{n}:=A_{n}\right\}$ and replacements A_{i}^{\prime} in (20):

$$
\begin{gather*}
A_{i}^{\prime} \equiv\left[A_{i}\left\{p_{1}: \equiv p_{1}^{\prime}(u), \ldots, p_{n}: \equiv p_{n}^{\prime}(u)\right\}\right] \tag{20}\\
\xi(u)\left(A_{0} \text { where }\left\{p_{1}:=A_{1}, \ldots, p_{n}:=A_{n}\right\}\right) \\
\Rightarrow \xi(u) A_{0}^{\prime} \text { where }\left\{p_{1}^{\prime}:=\lambda(u) A_{1}^{\prime}, \ldots, p_{n}^{\prime}:=\lambda(u) A_{n}^{\prime}\right\}
\end{gather*}
$$

- each $R_{i}^{\tau_{i}} \in$ Terms in \vec{R} is immediate and $\tau_{i} \in\{\mathbf{t}, \widetilde{\mathrm{t}}\}$
- each $C_{j}^{\tau_{j}} \in$ Terms is proper and $\tau_{j} \in\{\mathrm{t}, \widetilde{\mathrm{t}}\}(j=1, \ldots, m, m \geq 0)$
- $a_{0}, c_{j} \in \operatorname{Rec} \mathrm{~V}(j=1, \ldots, m)$ fresh
(st1) Rule A_{0} is an immediate term, $m \geq 1$

$$
\begin{align*}
& \left(A_{0} \text { such that }\left\{C_{1}, \ldots, C_{m}, \vec{R}\right\}\right) \tag{st1}\\
\Rightarrow & \left(A_{0} \text { such that }\left\{c_{1}, \ldots, c_{m}, \vec{R}\right\}\right) \\
& \text { where }\left\{c_{1}:=C_{1}, \ldots, c_{m}:=C_{m}\right\}
\end{align*}
$$

(st2) Rule A_{0} is a proper term

$$
\begin{align*}
& \quad\left(A_{0} \text { such that }\left\{C_{1}, \ldots, C_{m}, \vec{R}\right\}\right) \tag{st2}\\
& \Rightarrow\left(a_{0} \text { such that }\left\{c_{1}, \ldots, c_{m}, \vec{R}\right\}\right) \\
& \text { where }\left\{a_{0}:=A_{0},\right. \\
& \left.c_{1}:=C_{1}, \ldots, c_{m}:=C_{m}\right\}
\end{align*}
$$

Definition ($\gamma *$-condition)

A term $A \in$ Terms satisfies the γ^{*}-condition for an assignment $p:=\lambda(\vec{u} \vec{\sigma}) \lambda\left(v^{\sigma}\right) P^{\tau}:(\vec{\sigma} \rightarrow(\sigma \rightarrow \tau))$, with respect to $\lambda\left(v^{\sigma}\right)$, iff A is of the form: (23a)-(23c):

$$
\begin{align*}
A \equiv A_{0} \text { where }\left\{\begin{array}{rl}
\vec{a} & :=\vec{A}, \\
p & :=\lambda(\vec{u}) \lambda(v) P, \\
\vec{b} & :=\vec{B}\}
\end{array}, \$\right. \text {. } \tag{23a}
\end{align*}
$$

such that the following holds:
(1) $v \notin \operatorname{FreeVars}(P)$
(2) All occurrences of p in A_{0}, \vec{A}, and \vec{B} are occurrences:

- in $p(\vec{u})(v)$,
- which are in the scope of $\lambda(v)$ modulo renaming the variables \vec{u}, v

$$
\begin{gather*}
A \equiv A_{0} \text { where }\{\vec{a}:=\vec{A}, \tag{24a}\\
p:=\lambda(\vec{u}) \lambda(v) P, \tag{24b}\\
\vec{b}:=\vec{B}\} \tag{24c}\\
\Rightarrow_{\left(\gamma^{*}\right)} A_{0}^{\prime} \text { where }\left\{\vec{a}:=\vec{A}^{\prime},\right. \tag{24d}\\
p^{\prime}:=\lambda(\vec{u}) P, \tag{24e}\\
\left.\vec{b}:=\overrightarrow{B^{\prime}}\right\} \tag{24f}
\end{gather*}
$$

given that:

- $A \in$ Terms satisfies the γ^{*}-condition (in Definition 3) for $p:=\lambda(\vec{u}) \lambda(v) P:(\vec{\sigma} \rightarrow(\sigma \rightarrow \tau))$, with respect to $\lambda(v)$
- $p^{\prime} \in \operatorname{Rec}_{(\vec{\sigma} \rightarrow \tau)}$ is a fresh recursion variable
- $\overrightarrow{X^{\prime}} \equiv \vec{X}\left\{p(\vec{u})(v): \equiv p^{\prime}(\vec{u})\right\}$ is the result of the replacements
$X_{i}\left\{p(\vec{u})(v): \equiv p^{\prime}(\vec{u})\right\}$,
i.e., replacing all occurrences of $p(\vec{u})(v)$ by $p^{\prime}(\vec{u})$, in all corresponding parts $X_{i} \equiv A_{i}, X_{i} \equiv B_{i}$, in (24a)-(24f), modulo renaming the variables \vec{u}, v

Theorem (γ^{*}-Canonical Form Theorem)

For each $A \in$ Terms, there is a unique up to congruence, γ^{*}-irreducible $\mathrm{cf}_{\gamma^{*}}(A) \in$ Terms, s.th.:
(1) for some explicit, γ^{*}-irreducible $A_{0}, \ldots, A_{n} \in \operatorname{Terms}(n \geq 0)$

$$
\operatorname{cf}_{\gamma^{*}}(A) \equiv A_{0} \text { where }\left\{p_{1}:=A_{1}, \ldots, p_{n}:=A_{n}\right\}
$$

(2) $A \Rightarrow_{\gamma^{*}}^{*} \mathrm{cf}_{\gamma^{*}}(A)$
(0) for every B, such that $A \Rightarrow{ }_{\gamma^{*}}^{*} B$ and B is γ^{*}-irreducible, it holds that $B \equiv_{c}$ cf $_{\gamma^{*}}(A)$
i.e., $\mathrm{cf}_{\gamma^{*}}(A)$ is unique, up to congruence
(9. Consts $\left(\operatorname{cf}_{\gamma^{*}}(A)\right)=\operatorname{Consts}(A)$ and

- $\operatorname{FreeV}\left(\mathrm{cf}_{\gamma^{*}}(A)\right)=\operatorname{FreeV}(A)$

Proof.

The proof is by induction on term structure of A, (7a)-(7e), (7f), using reduction rules, definitions, and properties of reduction.
The reduction rules and their applications do not remove and do not add any constants and free variables.

Algorithmic Semantics of $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{r}^{\lambda}$

How is the algorithmic meaning / semantics of a proper (non-immediate) $A \in$ Terms determined?

- For every term $A \in$ Terms, by the Canonical Form Theorem 4:

$$
\begin{gathered}
A \Rightarrow \operatorname{cf}(A) \\
A \Rightarrow_{\gamma^{*}} \mathrm{cf}_{\gamma^{*}}(A)
\end{gathered}
$$

- For each proper (i.e., non-immediate) $A \in$ Terms, $\operatorname{cf}(A) / \operatorname{cf}_{\gamma^{*}}(A)$ determines the algorithm alg (A) for computing $\operatorname{den}(A)$

Theorem (Effective Reduction Calculi)

For every term $A \in$ Terms, its canonical forms $\operatorname{cf}(A)$ and $\operatorname{cf}_{\gamma^{*}}(A)$ are effectively computed, by the extended reduction calculus.

Definition (of Algorithmic Equivalence / Synonymy)

Two terms $A, B \in$ Terms are algorithmically equivalent, $A \approx B$, in a given semantic structure \mathfrak{A}, i.e., referentially synonymous in \mathfrak{A}, iff

- A and B are both immediate, or
- A and B are both proper
and there are explicit, irreducible terms (of appropriate types), A_{0}, \ldots, $A_{n}, B_{0}, \ldots, B_{n}, \quad n \geq 0$, such that:
(1) $A \Rightarrow_{\mathrm{cf}} A_{0}$ where $\left\{p_{1}:=A_{1}, \ldots, p_{n}:=A_{n}\right\} \equiv \operatorname{cf}(A)$
(2) $B \Rightarrow_{\text {cf }} B_{0}$ where $\left\{p_{1}:=B_{1}, \ldots, p_{n}:=B_{n}\right\} \equiv \operatorname{cf}(B)$
(0) for all $i \in\{0, \ldots, n\}$
(c) for every $x \in \mathrm{Pure} \mathrm{V} \cup \operatorname{Rec} \mathrm{V}$,

$$
\begin{equation*}
x \in \operatorname{Free} \mathrm{~V}\left(A_{i}\right) \quad \text { iff } \quad x \in \operatorname{Free} \mathrm{~V}\left(B_{i}\right) \tag{25}
\end{equation*}
$$

(c) $\operatorname{den}\left(A_{i}\right)=\operatorname{den}\left(B_{i}\right)$

Type Theory $\mathrm{L}_{\text {ar }}^{\lambda} / \mathrm{L}_{r}^{\lambda}$ is more expressive than Gallin TY2

Theorem (Moschovakis [13] 2006, §3.24

(1) For any explicit (λ-calculus) $A \in$ Terms, there is no (assignment) memory location, bound via where in its canonical form, which occurs in more than one of its parts $A_{i}(0 \leq i \leq n)$ of $\operatorname{cf}(A)$ $\mathrm{cf}_{\gamma^{*}}(A)$
(2) Assume that $A \in$ Terms is such that an assignment location $p \in \operatorname{RecV}$, bound via where in its canonical form $\operatorname{cf}(A) / \operatorname{cf}_{\gamma^{*}}(A)$, occurs in (at least) two assignment parts, and the denotations of those parts depend essentially on p :
Then, there is no explicit (λ-calculus) term $B \in$ Terms, such that B is algorithmically equivalent to $A, B \approx A$, i.e., for all λ-calculus $B \in$ Terms, $B \not \approx A$.

The proof is by Moschovakis [13] (2006). I provide it for the extended $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{r}^{\lambda}$

Reductions with Pure Quantifier Rules: Algorithmic Patterns and Instantiations

- Assume cube, large $_{0} \in$ Consts $_{(\tilde{\mathrm{e}} \rightarrow \tilde{\mathfrak{t}})}$, in the typical Aristotelian form:

Some cube is large $\xrightarrow{\text { render }} B \equiv \exists x\left(\right.$ cube $(x) \wedge$ large $\left._{0}(x)\right)$
$B \Rightarrow \exists x\left((c \wedge l)\right.$ where $\left.\left\{c:=\operatorname{cube}(x), l:=\operatorname{large}_{0}(x)\right\}\right)$
by $2 \times(\mathrm{ap})$ (ap-comp), (recap), (wh-comp), (head), (Iq-comp)
$\Rightarrow \underbrace{\exists x\left(c^{\prime}(x) \wedge l^{\prime}(x)\right)}_{B_{0} \text { algorithmic pattern }}$ where $\{$
$\underbrace{c^{\prime}:=\lambda(x)(\operatorname{cube}(x)), l^{\prime}:=\lambda(x)\left(\operatorname{large}_{0}(x)\right)}\} \equiv \operatorname{cf}(B)$
instantiations of memory slots c^{\prime}, l^{\prime}
from (26c), by (ξ) to \exists
$\approx \underbrace{\exists x\left(c^{\prime}(x) \wedge l^{\prime}(x)\right)}_{B_{0} \text { algorithmic pattern }}$ where $\{\underbrace{c^{\prime}:=\text { cube, } l^{\prime}:=\operatorname{large}_{0}}_{\text {instantiations of memory slots } c^{\prime}, l^{\prime}}\} \equiv B^{\prime}$
by Def. 6 from (26c)-(26d), den $(\lambda(x)($ cube $(x)))=\operatorname{den}($ cube $)$,

$$
\begin{equation*}
\operatorname{den}\left(\lambda(x)\left(\operatorname{large}_{0}(x)\right)\right)=\operatorname{den}\left(\operatorname{larg}_{0}\right) \tag{26f}
\end{equation*}
$$

$$
\begin{align*}
& \text { Some cube is large } \xrightarrow{\text { render }} T, \quad \text { large } \in \operatorname{Consts}_{((\widetilde{\mathrm{e}} \rightarrow \tilde{\mathfrak{t}}) \rightarrow(\widetilde{\mathrm{e}} \rightarrow \tilde{\mathrm{t}}))} \tag{27a}\\
& T \equiv \exists x[\operatorname{cube}(x) \wedge \underbrace{\operatorname{large}(\text { cube })(x)}_{\text {by predicate modification }}] \Rightarrow \ldots \tag{27b}\\
& \Rightarrow \exists x\left[(c _ { 1 } \wedge l) \text { where } \left\{c_{1}:=\operatorname{cube}(x),\right.\right. \tag{27c}\\
& \left.\left.l:=\operatorname{large}\left(c_{2}\right)(x), c_{2}:=\text { cube }\right\}\right] \tag{27d}\\
& \Rightarrow \exists x\left(c_{1}^{\prime}(x) \wedge l^{\prime}(x)\right) \text { where }\left\{c_{1}^{\prime}:=\lambda(x)(\text { cube }(x))\right. \text {, } \tag{27e}\\
& \left.l^{\prime}:=\lambda(x)\left(\operatorname{large}\left(c_{2}^{\prime}(x)\right)(x)\right), c_{2}^{\prime}:=\lambda(x) c u b e\right\} \tag{27f}\\
& \equiv \operatorname{cf}(T) \quad(27 \mathrm{e})-(27 \mathrm{f}) \text { is by }(\xi) \text { on (27c)-(27d) } \\
& \Rightarrow \gamma^{*} \exists x\left(c_{1}^{\prime}(x) \wedge l^{\prime}(x)\right) \text { where }\left\{c_{1}^{\prime}:=\lambda(x)(\text { cube }(x))\right. \text {, } \tag{27g}\\
& \left.l^{\prime}:=\lambda(x)\left(\operatorname{large}\left(c_{2}\right)(x)\right), c_{2}:=\text { cube }\right\} \tag{27h}\\
& \equiv \mathrm{cf}_{\gamma^{*}}(T) \\
& \approx \exists x\left(c_{1}^{\prime}(x) \wedge l^{\prime}(x)\right) \text { where }\left\{c_{1}^{\prime}:=c u b e,\right. \tag{27i}\\
& \left.l^{\prime}:=\lambda(x)\left(\operatorname{large}\left(c_{2}\right)(x)\right), c_{2}:=\text { cube }\right\} \tag{27j}
\end{align*}
$$

Some cube is large $\xrightarrow{\text { render }} C, \quad$ large $\in \operatorname{Consts}_{((\tilde{\mathrm{e}} \rightarrow \tilde{\mathrm{t}}) \rightarrow(\tilde{\mathrm{e}} \rightarrow \tilde{\mathrm{t}}))}$
$C \equiv \underbrace{\exists x\left[c^{\prime}(x) \wedge \operatorname{large}\left(c^{\prime}\right)(x)\right]}_{E_{0}}$ where $\left\{c^{\prime}:=\right.$ cube $\}$

$$
\begin{equation*}
\text { where }\left\{c^{\prime}:=\text { cube }\right\} \tag{28b}
\end{equation*}
$$

from (28a), by (ap) to \wedge of E_{0}; (Iq-comp); (wh-comp)

$$
\begin{equation*}
\Rightarrow[\underbrace{\exists x\left(c^{\prime}(x) \wedge l^{\prime}(x)\right) \text { where }\left\{l^{\prime}:=\lambda(x)\left(\operatorname{large}\left(c^{\prime}\right)(x)\right)\right\}}_{E_{2}}] \tag{28c}
\end{equation*}
$$

from (28c), by (head); (cong)

Proposition

(1) The $\mathrm{L}_{\mathrm{ar}}^{\lambda}$-terms $C \approx \operatorname{cf}(C)$ in (28a)-(28d), and many other $\mathrm{L}_{\mathrm{ar}}^{\lambda}$-terms, are not algorithmically equivalent to any explicit terms
(2) $\mathrm{L}_{\mathrm{ar}}^{\lambda}$ is a strict, proper extension of TY_{2}, Gallin [4]
(3) and of a la Montague semantics via inclusion of Montague IL in TY_{2}

Outline of a proof:
(1) follows by Theorem 7
(2) follows by Theorem 7, and (1)
(3) Gallin [4] provides an interpretation of Montague IL [14] into TY 2. Suitable interpretation can be given directly in $\mathrm{L}_{\mathrm{ar}}^{\lambda}\left(\mathrm{L}_{r}^{\lambda}\right)$.

Placement of $\mathrm{L}_{\mathrm{ar}}^{\lambda}$ in a class of type theories

Montague $\mathrm{IL} \subsetneq$ Gallin $\mathrm{TY}_{2} \subsetneq$ Moschovakis $\mathrm{L}_{\mathrm{ar}}^{\lambda} \subsetneq$ Moschovakis L_{r}^{λ}

Generalised Two-Argument Quantifiers: $Q:((\widetilde{\mathrm{e}} \rightarrow \widetilde{\mathrm{t}}) \rightarrow((\widetilde{\mathrm{e}} \rightarrow \widetilde{\mathrm{t}}) \rightarrow \widetilde{\mathrm{t}}))$

$$
\begin{align*}
& \text { some, every } \xrightarrow{\text { render }} \text { some, every } \in \operatorname{Consts}_{[(\widetilde{\mathrm{e}} \rightarrow \widetilde{\mathrm{t}}) \rightarrow((\widetilde{\mathrm{e}} \rightarrow \widetilde{\mathrm{t}}) \rightarrow \widetilde{\mathrm{t}})]} \tag{30}\\
& {\left[\text { some }_{\text {DET }} \text { cube }_{\mathrm{N}}\right]_{\mathrm{NP}} \xrightarrow{\text { render }} \text { some }(\text { cube }):((\widetilde{\mathrm{e}} \rightarrow \widetilde{\mathrm{t}}) \rightarrow \widetilde{\mathrm{t}})} \tag{31}\\
& \Rightarrow_{\mathrm{cf}}[\operatorname{some}(d) \text { where }\{d:=\text { cube }\}] \tag{32}\\
& \text { Some cube is large } \xrightarrow{\text { render }} A_{0} / A_{1} / A_{2} \quad \text { (options) } \tag{33a}\\
& A_{1} \equiv \operatorname{some}\left(p_{1}\right)\left(p_{2}\right) \text { where }\left\{p_{1}:=\text { cube, } p_{2}:=\operatorname{large}\left(p_{1}\right)\right\} \\
& A_{2} \equiv \underbrace{Q\left(p_{1}\right)\left(p_{2}\right)}_{\text {alg. pattern }} \text { where }\{\underbrace{Q:=\text { some }, p_{1}:=\operatorname{cube}, p_{2}:=\operatorname{large}\left(p_{1}\right)}_{\text {instantiations of memory }}\}
\end{align*}
$$

Alternatives: $Q:=$ every, $Q:=$ one, $Q:=$ two, $Q:=$ most, etc. No explicit terms are algorithmically equivalent to A_{1} and A_{2}, by Th .7 .
[K [is [larger $_{\text {ADJ }}$ than

$$
\begin{equation*}
\left.\left.\left.\left[\text { some }_{\mathrm{DET}} \text { number }_{\mathrm{N}}\right]_{\mathrm{NP}}\right]_{\mathrm{ADJP}}\right]_{\mathrm{VP}}\right]_{\mathrm{S}} \xrightarrow{\text { render }} A \tag{34a}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left.h:=\lambda\left(y_{k}\right) \lambda\left(x_{d}\right) \operatorname{larger}\left(x_{d}\right)\left(y_{k}\right)\right\}\right](K) \tag{34c}
\end{equation*}
$$

$$
\Rightarrow_{\mathrm{cf}} \mathrm{cf}(A) \equiv
$$

$$
\left[\lambda\left(y_{k}\right)\left(\operatorname{some}\left(d^{\prime}\left(y_{k}\right)\right)\left(h\left(y_{k}\right)\right)\right)\right](k) \text { where }
$$

$$
\left\{h:=\lambda\left(y_{k}\right) \lambda\left(x_{d}\right) \operatorname{larger}\left(x_{d}\right)\left(y_{k}\right),\right.
$$

$$
\left.d^{\prime}:=\lambda\left(y_{k}\right) \text { number, } k:=K\right\}
$$

$\Rightarrow \gamma_{\gamma^{*}}\left[\lambda\left(y_{k}\right) \operatorname{some}(d)\left(h\left(y_{k}\right)\right)\right](k)$ where

$$
\left\{h:=\lambda\left(y_{k}\right) \lambda\left(x_{d}\right) \operatorname{larger}\left(x_{d}\right)\left(y_{k}\right),\right.
$$

$$
d:=\text { number, } k:=K\}
$$

[K [is [larger ${ }_{\text {ADJ }}$ than

$$
\begin{equation*}
\left.\left.\left.\left[\text { some }_{\text {DET }} \text { number }_{\mathrm{N}}\right]_{\mathrm{NP}}\right]_{\mathrm{ADJP}}\right]_{\mathrm{VP}}\right]_{\mathrm{S}} \xrightarrow{\text { render }} A_{3} \tag{35a}
\end{equation*}
$$

$A_{3} \equiv\left[\lambda y_{k}\left[[Q(\right.\right.$ number $)]\left(\lambda x_{d} \operatorname{larger}\left(x_{d}\right)\left(y_{k}\right)\right)$ where $\{$

$$
Q:=\text { some }\}]](K) \Rightarrow \ldots
$$

$$
\Rightarrow\left[\lambda\left(y_{k}\right)\left(Q\left(d^{\prime}\left(y_{k}\right)\right)\left(h\left(y_{k}\right)\right)\right)\right. \text { where }
$$

$$
\left\{Q:=\text { some }, d^{\prime}:=\lambda\left(y_{k}\right)\right. \text { number }
$$

$$
\left.\left.h:=\lambda\left(y_{k}\right) \lambda\left(x_{d}\right) \operatorname{larger}\left(x_{d}\right)\left(y_{k}\right)\right\}\right](K)
$$

$$
\Rightarrow_{\mathrm{cf}} \mathrm{cf}(A) \equiv
$$

$$
\left[\lambda\left(y_{k}\right)\left(Q\left(d^{\prime}\left(y_{k}\right)\right)\left(h\left(y_{k}\right)\right)\right)\right](k) \text { where }
$$

$$
\left\{Q:=\text { some }, h:=\lambda\left(y_{k}\right) \lambda\left(x_{d}\right) \operatorname{larger}\left(x_{d}\right)\left(y_{k}\right)\right.
$$

$$
\left.d^{\prime}:=\lambda\left(y_{k}\right) \text { number }, k:=K\right\}
$$

$\Rightarrow_{\gamma^{*}}\left[\lambda\left(y_{k}\right) Q(d)\left(h\left(y_{k}\right)\right)\right](k)$ where

$$
\begin{aligned}
\{Q & :=\text { some }, h:=\lambda\left(y_{k}\right) \lambda\left(x_{d}\right) \operatorname{larger}\left(x_{d}\right)\left(y_{k}\right) \\
d & :=\text { number }, k:=K\}
\end{aligned}
$$

Every cube is larger than some dodeca $\xrightarrow{\text { render }}$
R_{3} where $\left\{R_{3}:=\operatorname{every}(p)\left(R_{2}\right)\right.$,

$$
\begin{aligned}
R_{2} & :=\lambda\left(x_{2}\right) \operatorname{some}(b)\left(R_{1}\left(x_{2}\right)\right) \\
R_{1} & :=\lambda\left(x_{2}\right) \lambda\left(x_{1}\right) \operatorname{larger}\left(x_{1}\right)\left(x_{2}\right), \\
p & :=\text { cube }, b:=\operatorname{dodeca}\}
\end{aligned}
$$

Every cube is larger than some dodeca $\xrightarrow{\text { render }}$

$$
\begin{aligned}
R_{3} \text { where }\left\{R_{3}\right. & :=\operatorname{some}(b)\left(R_{1}\right) \\
R_{1} & :=\lambda\left(x_{1}\right) \operatorname{every}(p)\left(R_{2}\left(x_{1}\right)\right), \\
R_{2} & :=\lambda\left(x_{1}\right) \lambda\left(x_{2}\right) \operatorname{larger}\left(x_{1}\right)\left(x_{2}\right), \\
p & :=\text { cube }, b:=\operatorname{dodeca}\}
\end{aligned}
$$

de dicto term S_{21}

$$
\begin{align*}
& S_{21} \equiv R_{3} \text { where }\left\{R_{3}:=Q_{2}\left(R_{2}\right)\right. \tag{38a}\\
& \qquad R_{2}:=\lambda\left(x_{2}\right) Q_{1}\left(R_{1}^{1}\left(x_{2}\right)\right) \tag{38b}\\
& R_{1}^{1}:=\lambda\left(x_{2}\right) \lambda\left(x_{1}\right) h\left(x_{1}\right)\left(x_{2}\right) \tag{38c}\\
& Q_{1}
\end{aligned}:=q_{1}\left(d_{1}\right), Q_{2}:=q_{2}\left(d_{2}\right), ~ \begin{aligned}
q_{2} & :=\text { every }, d_{2}:=\text { cube }, \tag{38d}\\
q_{1} & \left.:=\text { some }, d_{1}:=\text { dodeca }, h:=\text { larger }\right\} \tag{38e}
\end{align*}
$$

de re term S_{12}

$$
\begin{align*}
& S_{12} \equiv R_{3} \text { where }\left\{R_{3}:=Q_{1}\left(R_{1}\right)\right. \tag{39a}\\
& \qquad R_{1}:=\lambda\left(x_{1}\right) Q_{2}\left(R_{2}^{1}\left(x_{1}\right)\right) \tag{39b}\\
& R_{2}^{1}:=\lambda\left(x_{1}\right) \lambda\left(x_{2}\right) h\left(x_{1}\right)\left(x_{2}\right) \tag{39c}\\
& Q_{1}
\end{aligned}:=q_{1}\left(d_{1}\right), Q_{2}:=q_{2}\left(d_{2}\right), ~ \begin{aligned}
q_{2} & :=\text { every }, d_{2}:=\text { cube } \tag{39d}\\
q_{1} & \left.:=\text { some }, d_{1}:=\text { dodeca }, h:=\text { larger }\right\} \tag{39e}
\end{align*}
$$

Constrained Underspecified Terms

$$
\begin{align*}
& U \equiv R_{3} \text { where }\left\{l_{1}:=Q_{1}\left(R_{1}\right), l_{2}:=Q_{2}\left(R_{2}\right)\right. \tag{40a}\\
& \tag{40b}\\
& \qquad Q_{1}:=q_{1}\left(d_{1}\right), Q_{2}:=q_{2}\left(d_{2}\right) \tag{40c}\\
& \tag{40d}\\
& q_{1}:=\text { some }, q_{2}:=\text { every } \\
& \\
& \left.h:=\text { larger }, d_{1}:=\text { dodeca }, d_{2}:=\text { cube }\right\}
\end{align*}
$$

s.t. $\left\{Q_{i}\right.$ binds the i-th argument of h,
R_{3} binds (dominates) each $\left.Q_{i}(i=1,2)\right\}$

- U is underspecified (per se), but restricted:
$R_{3}, R_{i}(i=1,2)$ are free, restricted recursion variables
- any of its specifications have to satisfy the constraints
U can be specified to de dicto term:

$$
\begin{align*}
& U_{21} \equiv R_{3} \text { where }\left\{R_{3}:=l_{2}, l_{2}:=Q_{2}\left(R_{2}\right)\right. \tag{41a}\\
& \qquad R_{2}:=\lambda\left(x_{2}\right) l_{1}^{1}\left(x_{2}\right), l_{1}^{1}:=\lambda\left(x_{2}\right) Q_{1}\left(R_{1}^{1}\left(x_{2}\right)\right), \tag{41b}\\
& R_{1}^{1}:=\lambda\left(x_{2}\right) \lambda\left(x_{1}\right) h\left(x_{1}\right)\left(x_{2}\right) \tag{41c}\\
& Q_{1}
\end{aligned}:=q_{1}\left(d_{1}\right), Q_{2}:=q_{2}\left(d_{2}\right), ~ \begin{aligned}
q_{2} & :=\text { every }, d_{2}:=\text { cube }, \tag{41d}\\
q_{1} & \left.:=\text { some }, d_{1}:=\text { dodeca }, h:=\text { larger }\right\} \tag{41e}
\end{align*}
$$

U_{21} can be simplified to the similar, not algorithmically synonymous term:

$$
\begin{align*}
& S_{21} \equiv R_{3} \text { where }\left\{R_{3}:=Q_{2}\left(R_{2}\right)\right. \tag{42a}\\
& \qquad R_{2}:=\lambda\left(x_{2}\right) Q_{1}\left(R_{1}^{1}\left(x_{2}\right)\right) \tag{42b}\\
& R_{1}^{1}:=\lambda\left(x_{2}\right) \lambda\left(x_{1}\right) h\left(x_{1}\right)\left(x_{2}\right), \tag{42c}\\
& Q_{1}
\end{aligned}:=q_{1}\left(d_{1}\right), Q_{2}:=q_{2}\left(d_{2}\right), ~ \begin{aligned}
q_{2} & :=\text { every }, d_{2}:=\text { cube }, \tag{42d}\\
q_{1} & \left.:=\text { some }, d_{1}:=\text { dodeca }, h:=\text { larger }\right\} \tag{42e}
\end{align*}
$$

U can be specified to the de re term:

$$
\left.\begin{array}{l}
U_{12} \equiv R_{3} \text { where }\left\{R_{3}:=l_{1}, l_{1}:=Q_{1}\left(R_{1}\right)\right. \\
\qquad R_{1}:=\lambda\left(x_{1}\right) l_{2}^{1}\left(x_{1}\right), l_{2}^{1}:=\lambda\left(x_{1}\right) Q_{2}\left(R_{2}^{1}\left(x_{1}\right)\right) \\
R_{2}^{1}:=\lambda\left(x_{1}\right) \lambda\left(x_{2}\right) h\left(x_{1}\right)\left(x_{2}\right) \\
Q_{1}
\end{array}\right)=q_{1}\left(d_{1}\right), Q_{2}:=q_{2}\left(d_{2}\right), ~ \begin{aligned}
q_{2} & :=\text { every }, d_{2}:=\text { cube } \\
q_{1} & \left.:=\text { some }, d_{1}:=\text { dodeca }, h:=\text { larger }\right\}
\end{aligned}
$$

U_{12} can be simplified to the similar, not algorithmically synonymous term:

$$
\begin{align*}
& S_{12} \equiv R_{3} \text { where }\left\{R_{3}:=Q_{1}\left(R_{1}\right)\right. \tag{44a}\\
& \qquad R_{1}:=\lambda\left(x_{1}\right) Q_{2}\left(R_{2}^{1}\left(x_{1}\right)\right) \tag{44b}\\
& R_{2}^{1}:=\lambda\left(x_{1}\right) \lambda\left(x_{2}\right) h\left(x_{1}\right)\left(x_{2}\right) \tag{44c}\\
& Q_{1}
\end{aligned}:=q_{1}\left(d_{1}\right), Q_{2}:=q_{2}\left(d_{2}\right), ~ \begin{aligned}
q_{2} & :=\text { every }, d_{2}:=\text { cube }, \tag{44d}\\
q_{1} & \left.:=\text { some }, d_{1}:=\text { dodeca }, h:=\text { larger }\right\} \tag{44e}
\end{align*}
$$

$$
\begin{equation*}
\Phi \equiv \text { The cube is large } \tag{45}
\end{equation*}
$$

- First Order Logic (FOL) A

$$
\begin{align*}
\Phi \xrightarrow{\text { render }} A & \equiv \exists x[\underbrace{\forall y(\text { cube }(y) \leftrightarrow x=y)}_{\text {uniqueness }} \wedge \text { isLarge }(x)] \tag{46a}\\
S & \equiv \exists x[\underbrace{\forall y(P(y) \leftrightarrow x=y)}_{\text {uniqueness }} \wedge Q(x)] \tag{46b}
\end{align*}
$$

In FOL, A in (46a) has the following features:

- Existential quantification as the direct, topmost predication
- Uniqueness of the existing entity
- There is no referential force to the object denoted by the descriptor NP: [the cube] ${ }_{\mathrm{NP}}$
- There is no compositional analysis, i.e., no "derivation", of A from the components of Φ
- Higher Order Logic (HOL): Henkin (1950) and Mostowski (1957) a significant, positive step; but lost referential force

$$
\begin{equation*}
\text { the } \xrightarrow{\text { render }} T \equiv[\lambda P \lambda Q[\exists x[\underbrace{\forall y(P(y) \leftrightarrow x=y)}_{\text {uniqueness }} \wedge Q(x)]]] \tag{47a}
\end{equation*}
$$

the cube $\xrightarrow{\text { render }} C \equiv T($ cube $)$

$$
\left.\left.\left.\begin{array}{rl}
C & \equiv[\lambda P \lambda Q[\exists x[\underbrace{\forall y(P(y) \leftrightarrow x=y)}_{\text {uniqueness }} \wedge Q(x)]]](\text { cube }) \\
& \mapsto D \equiv \lambda Q[\exists x[\underbrace{\forall y(\text { cube }(y) \leftrightarrow x=y)}_{\text {uniqueness }} \tag{47c}
\end{array}\right) Q(x)\right]\right]
$$

(fr. (47b) by β-reduction)

$$
\begin{align*}
\Phi & \equiv \text { The cube is large } \stackrel{\text { render }}{\longrightarrow} B \equiv D(\text { isLarge }) \tag{48a}\\
B & \equiv[\lambda Q[\exists x[\underbrace{\forall y(\text { cube }(y) \leftrightarrow x=y)}_{\text {uniqueness }} \wedge Q(x)]]] \text { (isLarge }) \tag{48b}\\
& \nexists \exists x[\underbrace{\forall y(\text { cube }(y) \leftrightarrow x=y)}_{\text {uniqueness }} \wedge \text { isLarge }(x)] \tag{48c}
\end{align*}
$$

(fr. (48b) by β-reduction)

Example: rendering of the definite article "the"

Option 1

- Rendering the definite article "the" to a constant:

$$
\begin{equation*}
\text { the } \xrightarrow{\text { render }} \text { the } \in \text { Consts }_{((\widetilde{\mathrm{e}} \rightarrow \widetilde{\mathrm{t}}) \rightarrow \widetilde{\mathrm{e}})} \tag{49}
\end{equation*}
$$

- together with the following denotation of the constant the, requiring "uniqueness" of the denoted object:

$$
[(\operatorname{den}(t h e))(g)](\bar{p})\left(s_{0}\right)= \begin{cases}y, & \text { if } y \text { is the unique } y \in \mathbb{T}_{\mathrm{e}} \tag{50}\\
\text { for which } \bar{p}(s \mapsto y)\left(s_{0}\right)=1 \\
\text { er, } & \begin{array}{l}
\text { otherwise } \\
\text { i.e., there is no unique entity } \\
\text { that has the property } \bar{p} \text { in } s_{0}
\end{array}\end{cases}
$$

for every $\bar{p} \in \mathbb{T}_{(\widetilde{\mathrm{e}} \rightarrow \tilde{\mathrm{t}})}$ and every $s_{0} \in \mathbb{T}_{\mathrm{s}}$
There are other possibilities for rendering the definite article "the", e.g., see Loukanova [10].

Option 3: the definite determiner "the" and descriptors:

Underspecification

We can render "the" to A_{1} or $\operatorname{cf}\left(A_{1}\right)$, underspecified for p :

$$
\begin{equation*}
\text { the } \xrightarrow{\text { render }} A_{1} \equiv(q \text { s.t. }\{\text { unique }(p)(q)\}): \widetilde{\mathrm{e}} \tag{51a}
\end{equation*}
$$

the $\xrightarrow{\text { render }} \operatorname{cf}\left(A_{1}\right) \equiv(q$ s.t. $\{U\})$ where $\{U:=$ unique $(p)(q)\}$

$$
\begin{equation*}
p \in \operatorname{Rec}_{(\widetilde{\mathrm{e}} \rightarrow \tilde{\mathfrak{t}})}, \quad q \in \operatorname{Rec}_{\mathrm{V}_{\widetilde{\mathrm{e}}}} \tag{51b}
\end{equation*}
$$

- q is the object, whoever it turns to be, by having the property unique (p), by unique $(p)(q)$

$$
\begin{align*}
& \text { the cube } \xrightarrow{\text { render }} \operatorname{cf}\left(A_{2}\right): \widetilde{\mathrm{e}} \tag{52a}\\
& A_{2} \equiv(q \text { s.t. }\{\text { unique }(p)(q)\}) \text { where }\{p:=\text { cube }\} \tag{52b}\\
& \Rightarrow{ }_{\text {cf }} \mathrm{cf}\left(A_{2}\right) \equiv(q \text { s.t. }\{U\}) \text { where }\{U:=\text { unique }(p)(q), \\
&p:=\text { cube }\} \tag{52c}\\
& \text { by (st1), (head), from }(52 \mathrm{~b})
\end{align*}
$$

$$
\begin{gather*}
\text { The cube is large } \xrightarrow{\text { render }} \operatorname{cf}\left(A_{3}\right): \widetilde{\mathrm{t}} \tag{53a}\\
A_{3} \equiv \operatorname{large}(p)((q \text { s.t. }\{\text { unique }(p)(q)\}) \text { where }\{p:=\text { cube }\}) \tag{53b}\\
\Rightarrow \operatorname{large}(p)(Q) \text { where }\{ \\
Q:=[(q \text { s.t. }\{\text { unique }(p)(q)\}) \text { where }\{p:=\text { cube }\}]\} \tag{53c}\\
\text { by }(\text { ap }), \text { from }(53 b) \\
\Rightarrow \operatorname{cf~} \operatorname{cf}\left(A_{3}\right) \equiv \operatorname{large}(p)(Q) \text { where }\{Q:=(q \text { s.t. }\{U\}), \\
U:=\text { unique }(p)(q), p:=\text { cube }\} \tag{53d}\\
\text { by }(\mathrm{st} 1),(\text { wh-comp }),(\mathrm{B}-\mathrm{S}), \text { from }(52 \mathrm{c}),(53 \mathrm{c})
\end{gather*}
$$

Algorithmic Pattern: definite descriptors in predicative statements: Opt3

$$
\begin{align*}
A \equiv & L(Q) \text { where }\{Q:=(q \text { s.t. }\{U\}), U:=\operatorname{unique}(p)(q)\} \tag{54a}\\
& p, q, L \in \operatorname{FreeV}(A), p \in \operatorname{Rec}_{(\widetilde{\mathrm{e}} \rightarrow \tilde{\mathrm{t}})}, q \in \operatorname{Rec}_{\widetilde{\mathrm{e}}} \tag{54b}\\
& Q \in \operatorname{Rec}_{\widetilde{\mathrm{e}}}, U \in \operatorname{Rec}_{\widetilde{\mathrm{t}}}, L \in \operatorname{Rec}_{(\widetilde{\mathrm{e}} \rightarrow \widetilde{\mathfrak{t}})} \tag{54c}
\end{align*}
$$

$$
\begin{gather*}
\text { The number } n \text { is odd } \xrightarrow{\text { render }} \operatorname{cf}\left(A_{4}\right): \widetilde{\mathrm{t}} \tag{55a}\\
A_{4} \equiv \text { isOdd }((q \text { s.t. }\{\text { unique }(N)(q), p(q)\}) \text { where }\{ \tag{55b}\\
q:=n, p:=\text { number, } N:=\text { named- } n\}) \\
\Rightarrow_{\text {cf }} \operatorname{cf}\left(A_{4}\right) \equiv i s O d d(Q) \text { where }\{Q:=(q \text { s.t. }\{U, C\}) \\
U:=\text { unique }(N)(q), C:=p(q) \tag{55c}\\
q:=n, p:=\text { number }, N:=\text { named- } n\}
\end{gather*}
$$

- direct reference, by assignment; uniqueness and existence are consequences

The number n is large $\xrightarrow{\text { render }} \operatorname{cf}\left(A_{5}\right): \widetilde{\mathrm{t}}$ $A_{5} \equiv \operatorname{isOdd}((q$ s.t. $\{p(q)\})$ where $\{$

$$
\begin{equation*}
q:=n, p:=\text { number }\}) \tag{56b}
\end{equation*}
$$

$$
\Rightarrow_{\mathrm{cf}} \text { is } O d d(Q) \text { where }\{Q:=(q \text { s.t. }\{C\}), C:=p(q),
$$

$$
\begin{equation*}
q:=n, p:=\text { number }\} \tag{56c}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\Phi_{j}\right]_{\mathrm{NP}}\left[\left[\Theta_{L} \text { and } \Psi_{H}\right]\left[W_{w}\right]_{\mathrm{NP}}\right]_{\mathrm{VP}} } \tag{57a}\\
\xrightarrow{\text { render }} & \underbrace{\lambda x_{j}\left[\lambda y_{w}\left(L\left(x_{j}\right)\left(y_{w}\right) \wedge H\left(x_{j}\right)\left(y_{w}\right)\right)(w)\right](j)}_{\text {algorithmic pattern with memory parameters } L, H, w, j} \tag{57b}
\end{align*}
$$

[The cube $\left._{j}\left[\text { is larger than and is next to }[\text { [its }]_{j} \text { predecessor }\right]_{w}\right] \xrightarrow{\text { render }} A$

$$
\begin{align*}
& A \equiv \lambda x_{j}\left[\lambda y_{w}\left(\operatorname{larger}\left(y_{w}\right)\left(x_{j}\right) \wedge \operatorname{nextTo}\left(y_{w}\right)\left(x_{j}\right)\right)\right. \tag{59a}\\
& \left.\left(\text { predecessor }\left(x_{j}\right)\right)\right](\text { the }(\text { cube })) \\
& \Rightarrow_{\gamma^{*}} \underbrace{\lambda x_{j}\left[\lambda y_{w}\left(L^{\prime \prime}\left(x_{j}\right)\left(y_{w}\right) \wedge H^{\prime \prime}\left(x_{j}\right)\left(y_{w}\right)\right)\left(w^{\prime}\left(x_{j}\right)\right)\right](j)}_{\text {algorithmic pattern with memory parameters } L^{\prime \prime}, H^{\prime \prime}, w^{\prime}, j} \tag{59b}
\end{align*}
$$

$$
\begin{equation*}
\text { where }\left\{L^{\prime \prime}:=\lambda x_{j} \lambda y_{w} \operatorname{larger}\left(y_{w}\right)\left(x_{j}\right)\right. \tag{59c}
\end{equation*}
$$

$$
\begin{aligned}
& H^{\prime \prime}:=\lambda x_{j} \lambda y_{w} \operatorname{nextTo}\left(y_{w}\right)\left(x_{j}\right), \\
& \underbrace{w^{\prime}:=\lambda x_{j} \text { predecessor }\left(x_{j}\right), j:=\text { the }(c), c:=\text { cube }}_{\text {instantiations of memory } L^{\prime \prime}, H^{\prime \prime}, w^{\prime}, j}\}
\end{aligned}
$$

- The sentence (60a)-(60b) is a conjunction of propositions, i.e., propositional conjunction
- The computational semantics of (60a)-(60b) can be represented by $\mathrm{cf}_{\gamma^{*}}(B)$, in (61a)-(61b):
[The cube $_{j}$ is larger than $\left[[\mathrm{its}]_{j} \text { predecessor }\right]_{w}$ and $[\mathrm{it}]_{j}$ is next to $[\mathrm{it}]_{w} \xrightarrow{\text { render }} B$

$$
\begin{align*}
& B \equiv[\operatorname{larger}(w)(j) \wedge \operatorname{nextTo}(w)(j)] \text { where }\{ \\
& j:=\text { the (cube), } w:=\operatorname{predecessor}(j)\} \tag{61a}\\
& \Rightarrow_{\mathrm{cf}_{\gamma^{*}}}[L \wedge H] \text { where }\{L:=\operatorname{larger}(w)(j), H:=\operatorname{nextTo}(w)(j), \\
& w:=\operatorname{predecessor}(j) \text {, } \tag{61b}\\
& j:=\text { the }(c), c:=\text { cube }\}
\end{align*}
$$

Computational Syntax-Semantics of NL by using $\mathrm{L}_{\mathrm{ar}}^{\lambda}$ in GCBLG

For syntax-semantics interfaces of Natural Language (NL), I employ:

- Generalised Constraint-Based Lexicalized Grammar (GCBLG), see [7] GCBLG covers a variety of computational grammars, by representing major, common syntactic characteristics of a class of approaches to computational grammar, e.g.:
- Head-Driven Phrase Structure Grammar (HPSG) [3]
- Lexical Functional Grammar (LFG) [1]
- Categorial Grammar (CG) $[2,11]$
- Grammatical Framework (GF) [5] (tentatively)

Computational Syntax-Semantics of NL by using $\mathrm{L}_{\text {ar }}^{\lambda}$ in GCBLG

Generalised Constraint-Based Lexicalized Grammar (GCBLG) covers major syntactic categories of natural language, by linguistically motivated generalizations.

- The syntactic information is distributed among a hierarchy of types
- typed feature-value descriptions: Feature-Value Logics; Attribute-Value (ATV) Matrices
- The semantic representation in syntax-semantics composition and interface, is by the feature SEM and its recursive values

SEM has typed values that encode recursion terms of $L_{a r}^{\lambda}$, alternatively, of DTTSitInfo

- Efficient and effective, computational rendering of NL expressions to γ^{*}-canonical forms, see Loukanova [6, 9, 8]

Computational Syntax-Semantics of NL by using $\mathrm{L}_{\mathrm{ar}}^{\lambda}$ in GCBLG

Computational Grammar with Syntax-Semantics and Underspecification

For a given NL expression ϕ, its grammar analysis Φ, includes syntax-semantics interface, throughout its constituents

$$
\begin{equation*}
\Phi \xrightarrow{\text { render }} A \equiv \operatorname{cf}_{\gamma}(A) \tag{62}
\end{equation*}
$$

Motivation for Type Theory $\mathrm{L}_{\text {ar }}^{\lambda}$ and Outlook

- $\mathrm{L}_{\mathrm{ar}}^{\lambda}$ provides Computational Semantics with:
- greater semantic distinctions than type-theoretic semantics by λ-calculi, e.g., Montagovian grammars
- $\mathrm{L}_{\mathrm{ar}}^{\lambda}$ provides Parametric Algorithms

Parameters can be instantiated depending on:

- classes and sets of specific names, NPs, verbs, properties, relations, etc.
- representing major semantic ambiguities and underspecification [6], at the object level of its formal language, without meta-language variables
- $L_{a r}^{\lambda}$ with logical operators and pure quantifiers can be used for:
- proof-theoretic computational semantics and reasoning
- inferences of semantic information
- Canonical forms can be used by automatic provers and proof assistants

Looking Forward!

Outlook1: Development of Computational Theories and Applications

- Generalised Computational Grammar: CompSynSem interfaces in NL, HL (human language)
- Hierarchical lexicon with morphological structure and lexical rules
- Syntax of NL expressions (phrasal and grammatical dependences)
- Syntax-semantics inter-relations in lexicon and phrases
- A Big Picture - simplified and approximated, but realistic:

Algorithmic CompSynSem of Human Language (HL)

(Canonically) Algorithmic CompSynSem Interfaces
(I've done quite a lot of it, but still a lot to do!)

Outlook2: Applications to Human / Natural Language Processing (NLP)

Translations via Algorithmic Syntax-Semantics Interfaces (CompSynSem) Human Languages, Ontologies, and $\mathrm{L}_{\mathrm{ar}}^{\lambda} /$ Sitl

Lexicon of $\mathrm{L}_{0} \Longleftrightarrow$ Syn of $\mathrm{L}_{0} \underset{\text { render }}{\stackrel{\text { render }}{ }} \mathrm{L}_{\mathrm{ar}}^{\lambda} /$ Sitl Canonical Terms $\downarrow \uparrow$
possible
Data / Ontologies / Tree Banks, etc.

modifications
of the terms
$\downarrow \uparrow$
\{Lexicon of $\mathrm{L}_{i} \Longleftrightarrow$ Syn of $\mathrm{L}_{i} \underset{\text { render }-1}{\stackrel{\text { render }}{\longrightarrow}} \mathrm{L}_{\text {ar }}^{\lambda} /$ Sitl Canonical Terms

$$
\mid 1 \leq i \leq n\}
$$

Some References I

囯 Bresnan, J.: Lexical-Functional Syntax. Blackwell Publishers, Oxford (2001)

Buszkowski, W.: Mathematical Linguistics and Proof Theory. In: J. van Benthem, A. ter Meulen (eds.) Handbook of Logic and Language, pp. 683-736. North-Holland, Amsterdam (1997). DOI https://doi.org/10.1016/B978-044481714-3/50016-3. URL https://www.sciencedirect.com/science/article/pii/ B9780444817143500163
D DELPH-IN: Deep Linguistic Processing with HPSG (DELPH-IN) (2018, edited).
URL http://moin.delph-in.net.
Accessed 20-Aug-2023

Some References II

Gallin, D.: Intensional and Higher-Order Modal Logic: With Applications to Montague Semantics.
North-Holland Publishing Company, Amsterdam and Oxford, and American Elsevier Publishing Company (1975).
URL https://doi.org/10.2307/2271880
國 The Grammatical Framework GF.
http://www.grammaticalframework.org.
Accessed 20-Aug-2023
Loukanova, R.: Relationships between Specified and Underspecified Quantification by the Theory of Acyclic Recursion. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal 5(4), 19-42 (2016).
DOI 10.14201/ADCAIJ201654.
URL https://doi.org/10.14201/ADCAIJ2016541942

Some References III

Loukanova, R.: An Approach to Functional Formal Models of Constraint-Based Lexicalized Grammar (CBLG).
Fundamenta Informaticae 152(4), 341-372 (2017).
DOI 10.3233/FI-2017-1524.
URL https://doi.org/10.3233/FI-2017-1524
R Loukanova, R.: Gamma-Reduction in Type Theory of Acyclic Recursion.
Fundamenta Informaticae 170(4), 367-411 (2019).
URL https://doi.org/10.3233/FI-2019-1867

Some References IV

䍰 Loukanova, R.: Gamma-Star Canonical Forms in the Type-Theory of Acyclic algorithms.
In: J. van den Herik, A.P. Rocha (eds.) Agents and Artificial Intelligence, Lecture Notes in Computer Science, vol. 11352, pp. 383-407. Springer International Publishing, Cham (2019). URL https://doi.org/10.1007/978-3-030-05453-3_18
婳 Loukanova, R.: Restricted Computations and Parameters in Type-Theory of Acyclic Recursion.
ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal 12(1), 1-40 (2023).
URL https://doi.org/10.14201/adcaij. 29081

Some References V

國 Moortgat, M.: Categorial Type Logics.
In: J. van Benthem, A. ter Meulen (eds.) Handbook of Logic and Language, pp. 93-177. Elsevier, Amsterdam (1997).
URL https://doi.org/10.1016/B978-044481714-3/50005-9
(Moschovakis, Y.N.: The formal language of recursion. Journal of Symbolic Logic 54(4), 1216-1252 (1989). URL https://doi.org/10.1017/S0022481200041086

國 Moschovakis, Y.N.: A Logical Calculus of Meaning and Synonymy. Linguistics and Philosophy 29(1), 27-89 (2006).
URL https://doi.org/10.1007/s10988-005-6920-7
Thomason, R.H. (ed.): Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, Connecticut (1974)

