
Informalizing formalized
mathematics using the
Lean theorem prover

Kyle Miller, joint with Patrick Massot
UC Santa Cruz & Université Paris-Saclay

Workshop on Libraries of Formal Proofs and Natural Mathematical Language
8 September, 2023

Patrick Massot

Who am I?

● Low-dimensional topologist

Who am I?

● Low-dimensional topologist
● PL enthusiast

(2015, Swift Navigation)

Who am I?

● Low-dimensional topologist
● PL enthusiast
● Contributor and maintainer for mathlib, the Lean mathematical library

Overview

1. Formalization, Lean, & Mathlib
2. Informalization?
3. Developing an informalizer

What is formalization?

Formalized mathematics, briefly

A formal system consists of some collection of rules that one may apply to strings
of symbols to derive other strings.

In formal logic systems, the strings represent logical statements. For example,
first-order logic and type theory.

Whatever our personal philosophies about the nature of mathematics may be,
a common belief is that every mathematical truth can be represented formally.

(At least in theory!)

In practice, fully written formal proofs can be extremely long and non-illuminating.

Mathematicians often write a recipe for a proof instead.

(“by a straightforward calculation…” “by adapting Theorem 2.2” etc.)

Computer formalization, briefly

Computers are great at processing long and non-illuminating symbolic reasoning!

A system design:

● A kernel is a small program to verify completed formal proofs.
● Tactics are composable programs to generate pieces of formal proofs.
● An elaborator is a program that takes a human-written input and fills in certain

missing details and executes invoked tactics.

Then, one can use “recipe-like” proofs to complete a formalization effort.

Often there is a code editor with special support, giving an interactive experience.

To name a few systems: Agda, Coq, HOL Light, Isabelle, Lean, Mizar, (Metamath)

What is Lean?

The Lean theorem prover

● Lean is one of the newest interactive theorem provers.
○ Lean 1 was released in 2013, Lean 3 in 2017, Lean 4 in 2021
○ Agda is 1999, Coq is 1989, Isabelle is 1986, Mizar is 1973

● From Microsoft Research (Lean 4: Leonardo de Moura, Sebastian Ullrich, et al.)
● Uses a dependent type system based on the Calculus of Constructions

○ That is, function arguments each have types that can depend on the preceding arguments
○ Every mathematical proposition can be encoded as a type;

Proofs are “programs”! (the Curry–Howard correspondence)
○ The encoding is sound: it is equiconsistent with ZFC + some inaccessible large cardinals
○ Similar to Coq or Agda, but with features like proof irrelevance and quotient types

● Perhaps by accident, mathematicians are a large fraction of Lean users

Lean 4

● First public release was January 2021
● It is a full programming language that is also a theorem prover

○ Much of Lean 4 is written in Lean 4

● Can prove theorems in Lean 4 about programs written in Lean 4
● Can write programs in Lean 4 that write programs written in Lean 4

○ For example, the tactic framework of proof-writing programs

● Can extend Lean 4 from within Lean 4
○ Syntax, macros, elaboration rules, etc.
○ One language for everything!

Examples

Examples

What is mathlib?

The Lean mathematical library (mathlib)

Mathlib is a community-driven project to formalize all of mathematics as a single
cohesive library.

Has over a million lines of Lean code produced by over a hundred contributors.

Like a digital Bourbaki, but undergoes constant revision and refactoring.

Contains undergraduate, graduate, and even some research level mathematics.

Partial mathlib overview

…

(Why in Lean? Why not $THEOREM_PROVER?)

Experts in ITPs discuss defects in Lean’s underlying theory
(Non-transitivity of definitional equality! Failure of subject reduction! No Church-Rosser property!)

I am not an expert. I’m generally ignorant about the effect of these defects.

Lean happens to have a community of research mathematicians surrounding it,
it feels comfortably set-theory-ish to them.

The community formalizes things that are interesting to mathematicians:

● Perfectoid spaces (Buzzard, Commelin and Massot)
● The existence of a sphere eversion (Massot, Nash, and Van Doorn)
● Scholze’s main theorem of liquid modules (Commelin)

Why formalize mathematics?

Mathematicians for now seem not to be so interested in computer verification of
proofs – while mistakes do slip into most papers, they’re often believed to be
“minor” since the idea is generally “right.”

So why go through all this effort? Some reasons:

1. Crystallization of knowledge
2. Compatibility of definitions between papers (like Hales’ Formal Abstracts)
3. To relieve referees from having to verify correctness
4. Preservation of mathematics
5. Formalization can reveal missing mathematics
6. It’s becoming “interesting” to the wider mathematics community

I hear mathematicians outside ITP communities say they think journals will
eventually require formalized proofs. (Will it be the new LaTeX?)

Another reason: informalization?

English Lean

formalization

informalization

Why informalize?

1. We can try to make formalized math more accessible to the wider community.

Which of the following takes less specialized training to read?

● A

● b

Why informalize?

2. We can create documents that answer basic questions about a proof.

What if we had an “IDE extension” for English proofs?

Proof context: E is a subset of Rⁿ.
The complement of E is closed.
x is an element of E.
Goal: x is in the interior of E.

Why informalize?

3. We can create documents with multiple levels of detail available for readers.

We see that (n + 1)² is positive.

… Why?

Since n + 1 is positive, (n + 1)² is positive.

… Why?

Since n + 1 is positive by lemma Nat.succ_pos, then by lemma Nat.pow_pos_of_pos
we obtain that (n + 1)² is positive.

Authoring these interactive documents by hand would be a chore — can’t we take
advantage of having already done the tedious work of writing a Lean proof?

Why informalize?

4. We can create an accurate database of informal/formal proof pairs

Machine learning researchers want this data to train their ML models, but it’s not a
natural product of formalization work.

Given an informalization system, generating these pairs after the fact is easy.

Maybe auto-formalization is learnable as an inverse to informalization?

How not to informalize

The cool thing to do would be to apply an LLM to translate Lean code to English.

However:

● We want output that, while informal, is not wrong.
○ Ambiguity, omissions, lack of clarity: these are admissible (but still bugs!).

● LLMs can produce informal text, but we can’t guarantee it’s not wrong.

ChatGPT doesn’t mention the family of sets t. What recourse do we have?

How to informalize

Patrick Massot and I have developed a prototype auto-informalizer.

Input: a Lean 4 module

Output: an interactive document (HTML)

We use data produced during Lean 4’s elaboration procedure including

● Every proof term
● Every tactic used
● Every tactic state (full local contexts and metavariable contexts)
● The hierarchical structure of the tactic proof

It uses “good old-fashioned AI” principles.

Our driving example

From Bourbaki, Topologie Générale:

Example: the theorem statement

Lean

English

Example: the proof

This is expanded out to a comparable
level of detail to the Lean code.

Lean proofs can take advantage of the
elaborator being able to fill in details
obvious to a computer, so it’s not
surprising if an English version might
be wordier!

Let’s look at a demo

Implementation

Rough architecture

Lean print_proof
frontend

Expr → LaTeX

InfoTree → TacticTree

Local context →
English paragraph

Proposition →
English clause

Tactic describers

Proof term
decompiler

Explanation
webapp

Expressions to LaTeX: LeanTeX

We have a Lean.Expr → LaTeX pretty printer.

Basic “impedance mismatch”:

Lean expressions are trees, but traditional notation is a 2D layout.

Precedence levels are not sufficient to model 2D layout properly.

So far this has been enough:

?

Expressions to LaTeX – some examples

Some LaTeX pretty printers

Expressions to LaTeX: function applications

Another “impedance mismatch” is from Lean preferring curried form.

f(a,b)(c,d) is the same as f a b c d is the same as f(a,b,c,d).

Principle:

We allow output to have the usual harmless ambiguities in common notation.

(Though we try not to be ambiguous if possible!)

Propositions to English

We have two main subsystems, the second making heavy use of the first:

Ontologies

In AI, an ontology is a formal-ish model of some aspect of the world:
it is a description of what is and what can be.

An ontology permits one to collect data about the world, perform computations
with this data, and infer things about the world from these calculations.

Lean 4 has expressions, declarations, metavariables, local contexts, tactic states,
tactics, etc. etc. etc.

To translate to English:

● we need an ontology compatible with (a subset of) common practice
mathematical language and

● a mapping from the Lean 4 ontology to the English ontology.

The better the ontology, the better the calculation we can do to improve how
natural the output is.

An ontology for theorem-style paragraphs

Let entityName : noun.payload be article
adjectives noun.text with accessories .

Let n be a natural number.

Let f : X -> Y be an injective function.

For all adjectives noun.inlineText with
accessories, …

For all finite types T with decidable
equality, …

Basic algorithm for entity construction

We keep a list of entities actively under construction.

For each local variable,

We use the variable’s type to choose a handler.

The handler decides what the local variable is about.

Ex. (T : Type) is about T Ex. (h : U ∈ Nhd x) is about U

It looks for the corresponding entity entry, taking into account dependencies.

It alters the Noun or attaches an Adjective or Accessory, as appropriate.

Example

Log:

A simple calculation: merging

If consecutive entities have compatible data, we can merge their introductions into
a single sentence.

Trivial logic

Mathematicians do not manually curry/uncurry implications/conjunctions

(The wording difference is just
due to a current limitation.)

Grammatical agreement

With English, there are two main grammatical features that need to be observed:

● Plurality
○ Verbs: is/are
○ Nouns: function/functions

● Articles
○ A function
○ An injective function

We avoid tenses, but we do make use of the subjunctive for “to be”:

● Let n be a natural number.
● Suppose n is a natural number.

Describing proofs

The next big part: representing proofs

Key input data structure: the InfoTree

Lean 4 produces InfoTree objects during elaboration.

These contain more data than the fully elaborated terms.

Original purpose: providing all the information one sees in VS Code.

Incidentally, InfoTrees have a hierarchical structure reflecting proof structure.

But it’s rough.

InfoTrees?

One side-effect of the elaboration process is the creation of “InfoTrees,” which
record information needed to support mouseover text, jump-to-definition, and the
Infoview.

Excerpt of an InfoTree

…

Conversion to TacticTree

As a first pass, we preprocess these to try to link up different steps of a tactic proof.

Tactic describers

Then we have “tactic describers” that consume these trees and create hierarchical
explanations.

What are side goals? Many tactics produce multiple goals that tend to be focused
on and proved immediately after. Tactic describers may elect handle them.

Explanations

The output of a tactic describer is more-or-less an Explanation, a piece of a
structured document. For example:

● Block indentation
● Paragraph breaks
● Text with a (+)/(-) to replace some text with other text
● Clickable words that show additional text
● Tooltips
● Goal states
● Multiline equations

There is a JavaScript webapp that renders Explanations.

Getting paragraph breaks to yield correct HTML is more subtle than it might
seem. Same with highlighting text on mouseover across block elements.

Proof term explanations

For a number of tactics, we currently compute a proof term and then use a generic
procedure to “compile” that proof term to English.

Reason 1. Ideally, we do not want to tactic describers to recapitulate every
tactic implementation.

Reason 2. The Laziness Principle: a Lean author writes primarily to be
understood by the computer. We cannot trust that the arguments supplied to
tactics or lemmas are meaningful as an explanation for a human.

Reason 3. Even given non-lazy authors, not everything that a computer wants
to see is similarly desired by a human reader.

Proof term explanations, a decompiler

Local context + expected type + proof term

 v

Synthesized tactic trees, with synthesized intermediate goal states

 v

Rendered Explanations

Ex: if a proof term is a lambda and the expected type is not a forall, we can
compute WHNF of the type to discover which definitions are unfolded and then
insert this intermediate step.

Future ideas

● Expand the suite of tactic describers and pretty printers
○ How much can be auto-generated from mathlib conventions alone?

● Generate a mathematician-friendly mathlib4_docs
● Write a (chapter or two of a) textbook using this technology

○ How would students respond to it? Looking into using it in Math 100 and Math 110 at UCSC

● Incorporate machine learning to make stylistic decisions
○ This circumscribes ML to a problem where it can be not wrong.
○ This could be used to establish baseline levels of detail.

● What are practical improvements to our ontology that would yield
higher-quality output? What does the literature on mathematical language say?

Distant future:

● Build an informalizer that provably produces output that has at least one
interpretation that is equivalent to the original Lean.

