
LEANAIDE
A statement autoformalisation tool for Lean

EuroProofNet Workshop 2023

CONTRIBUTORS
Siddhartha Gadgil
Anand Rao Tadipatri
Ayush Agrawal
Ashvni Narayanan
Navin Goyal

OVERVIEW
LeanAIde is a tool to translate mathematical
statements from natural language to Lean code.
The tool is itself written in Lean 4.
At its core, LeanAIde relies on a large language
model for translation.
Various optimisations to the input and output of the
language model are used to push up the success
rate of translation.

PROMPTING
The prompting style used to query a language model

can have a strong effect on the output.

A few possible prompting styles for autoformalisation
include:

Direct (zero-shot) prompting
(Fixed) few-shot prompting
Input-dependent prompting

THE DESIGN
Receive the input statement from the user through
the Lean editor.
Gather documentation strings from mathlib with
similar content.
Assemble a prompt from these doc-strings and
query the language model.
Post-process the outputs and retain only those
corresponding to well-formed Lean expressions.
Pick an output representing the most common
translation and display it in the Lean editor.

SENTENCE
EMBEDDINGS

Sentence embeddings are numerical representations
of text as vectors of real numbers in a way that

captures semantic relationships between them.

The embedding of the input statement is computed
(using OpenAI embeddings) and compared with stored

embeddings of Mathlib doc-strings to identify the
most similar ones.

PROMPTING
The prompt to the language model is assembled from

the sentence embeddings as an alternating dialogue of
doc-strings (“from the user”) and their corresponding

Lean formal statements (“from the assistant”).

This is sent as a query to the OpenAI GPT-3.5
Turbo or GPT-4 language model via an API call.

Additional configuration options permit adding a few
fixed examples to the prompt and also using theorems

with doc-strings from the current editor window.

ELABORATION
FILTERING

Additionally, we retain only those outputs of the
language model that correspond to well-formed Lean

expressions.

As Lean is a dependently typed language, this is a
very strong condition.

OUTPUT
A�er post-processing and filtering, the final output is

picked by majority voting, i.e.,

the statements are clustered by proved equivalence
using the aesop automation tool and
a representative of the most common translation is
then presented to the user.

EVALUATION
The LeanAIde tool is tested against two datasets:

A custom data-set of around 120 theorem
statements at the undergraudate level
The ProofNet benchmark for statement
autoformalisation

CUSTOM DATASET
The custom data-set of 120 statements is split into

three categories:

normal statements
“silly” statements
false statements

The last two categories are specifically to guard
against data contamination.

PROOFNET
A benchmark for statement autoformalisation

consisting of 371 theorem statements drawn from
various undergraduate pure mathematics textbooks.

RESULTS
Parameters: 20 input-dependent prompts, 10 outputs

per sentence, temperature 0.8

Total Number
elaborated

Number
correct

Normal
statements

40 37 36

Silly
statements

40 39 36

Total Number
elaborated

Number
correct

False
statements

37 31 28

Overall success rate: 85%

PROOFNET RESULTS
Total Number elaborated Number correct

100 69 37

SUMMARY
LeanAIde is a tool for translating natural language

theorem statements to Lean code, with a success rate
high enough to be of possible practical use.

The tool crucially relies on several distinctive features
of the Lean theorem prover, including its programming

and meta-programming capabilities and its the vast
and unified mathematics library.

AI AND PROOF
ASSISTANTS

There is potential for combining languages models
with proof assistants for tasks such as

Autoformalisation
Code completions and debugging
Navigating libraries of formal mathematics
Suggesting new lemmas during formalisation

Such tools can make formalisation of mathematics
vastly more approachable.

REFERENCES
Zhangir Azerbayev and Edward W. Ayers. lean-chat:
user guide. Lean. 2023. url:
https://github.com/zhangir-azerbayev/lean-chat.
Zhangir Azerbayev et al. ProofNet: Autoformalizing
and Formally Proving Undergraduate-Level
Mathematics. 2023. arXiv: 2302.12433 [cs.CL].
Naman Jain et al. “Jigsaw: Large language models
meet program synthesis”. In: Proceedings of the
44th International Conference on So�ware
Engineering. 2022, pp. 1219–1231.

Albert Q Jiang et al. “Dra�, sketch, and prove:
Guiding formal theorem provers with informal
proofs”. In: arXiv preprint arXiv:2210.12283 (2022).
Leonardo de Moura and Sebastian Ullrich. “The lean
4 theorem prover and programming language”. In:
Automated Deduction–CADE 28: 28th International
Conference on Automated Deduction, Virtual Event,
July 12– 15, 2021, Proceedings 28. Springer. 2021,
pp. 625–635.
Arvind Neelakantan et al. “Text and code
embeddings by contrastive pre- training”. In: arXiv
preprint arXiv:2201.10005 (2022).
OpenAI. GPT-4 Technical Report. 2023. arXiv:
2303 08774 [CL]

Qingxiang Wang et al. “Exploration of neural
machine translation in autoformalization of
mathematics in Mizar”. In: Proceedings of the 9th
ACM SIGPLAN International Conference on Certified
Programs and Proofs. 2020,pp. 85–98.
Yuhuai Wu et al. “Autoformalization with large
language models”. In: Advances in Neural
Information Processing Systems 35 (2022),
pp. 32353–32368.
Jannis Limperg and Asta Halkjær From. “Aesop:
White-Box Best-First Proof Search for Lean”. In:
Proceedings of the 12th ACM SIGPLAN In-
ternational Conference on Certified Programs and

