
Formalising Combinatorial Optimisation

Mohammad Abdulaziz

King’s College London

September 16, 2025

Mohammad Abdulaziz September 16, 2025 1 / 14

Combinatorial Optimisation (CO)

Wikipedia:

’Subfield of mathematical optimisation that consists of finding
an optimal object from a finite set of objects. . . ’

Examples:
• Shortest Paths, Spanning Trees, Matching, Flows, Travelling

Salesman, Set Covers, Linear Programming, etc.

Mohammad Abdulaziz September 16, 2025 2 / 14

Combinatorial Optimisation (CO)

Mohammad Abdulaziz September 16, 2025 2 / 14

Project:
• A formal library of graduate/research-level

results in CO
– Books like Korte and Vygen’s or

Schreijver’s
– Also, research-y results
– Focus on polynomial time algorithms

• Verified, efficient, executable implementations
of CO algorithms

– Covering most CO algorithms in CAS’s like
Magma, Sage, or Macaulay

Combinatorial Optimisation (CO)

Other work on formalising combinatorial optimisation
• Shortest paths: Dijkstra’s, Floyd-Warshall, etc
• Maximum flows in Mizar [Lee 2005] and Isabelle [Lammich and

Sefidgar 2019]

• Approximation algorithms in Isabelle [Nipkow et al. 2020]

• The Simplex algorithm in Isabelle [Maric et al. 2018]

• Spanning trees in Isabelle [Lammich and Nipkow 2019]

Using many different representations and methodologies

Mohammad Abdulaziz September 16, 2025 2 / 14

Combinatorial Optimisation (CO)

Why have a formal library of CO results?
• Mathematics behind many of the results is complex and

needs verification
– Matching algorithms, graph colouring algorithms, etc.

• Verified SW for applications
– Safety-critical applications: Kidney exchange (matching),

air traffic control (flows), path planning for UAVs (shortest
path)

– Reliable tool for mathematical proof discovery: many
depend on CO computations, e.g. matroid computations
in CAS

• Unified representation and methodology
– Previous attempts used different representations
– Enabling reuse of results and focus on mathematics

Mohammad Abdulaziz September 16, 2025 2 / 14

Combinatorial Optimisation (CO)

Started as a collaboration between me and Kurt Mehlhorn
Grew into ca. 123K loc
Main contributors:

• Thomas Ammer, Ralista Dordjonova, Lukas Koller, Mitja
Krebs, Christoph Madlener, Shriya Meenakshisundaram, Kurt
Mehlhorn, Adem Rempapa

Initially, all contributions were on my disk or in separate repo’s
• A lot of work by students doing masters or other projects

Contributions are now added as pull requests
• 12 PRs

Each new contribution is an Isabelle session
• Like the AFP

Mohammad Abdulaziz September 16, 2025 2 / 14

Combinatorial Optimisation (CO)

Paths: DFS, BFS, Floyd-Warshall
Matchings:

• Edmonds’ blossom shrinking algorithm
• RANKING algorithm for online matching
• Tutte’s theorem, Tutte/Berge formula

Maximum flows: Dinic’s algorithm
Minimum cost flows: Orlin’s algorithm
Matching/LP connection: Integrality of the matching polytope
Matroids and greedoids:

• Greedy algorithms for matroid and greedoid optimisation
• Maximising matroid intersection

Spanning trees: Kruskal and Prim’s algorithms
TSP: Christofides’ algorithm

Mohammad Abdulaziz September 16, 2025 2 / 14

Combinatorial Optimisation (CO)

Goals here:
• Demonstrate

– The mathematics of CO via an example
– Reasoning patterns one needs to perform
– Objects one needs to model

Discuss future directions

Mohammad Abdulaziz September 16, 2025 2 / 14

Maximum Cardinality Matching

A matching M is a set of edges no two of which share a vertex
The cyan edges form a matching of maximum cardinality

Mohammad Abdulaziz September 16, 2025 3 / 14

u1

u2

u3 u4 u5

u6

u7

u8

u9

u10

u11

u12

Edmonds’ Blossom Shrinking Algorithm

Computes a maximum cardinality matching for undirected graphs

Mohammad Abdulaziz September 16, 2025 4 / 14

u1

u2

u3 u4 u5

u6

u7

u8

u9

u10

u11

u12

Edmonds’ Blossom Shrinking Algorithm

Goal:
• Formalise correctness proof in LEDA [Mehlhorn & Näher 1998]

In collaboration with Kurt Mehlhorn

Mohammad Abdulaziz September 16, 2025 4 / 14

u1

u2

u3 u4 u5

u6

u7

u8

u9

u10

u11

u12

Edmonds’ Blossom Shrinking Algorithm

Why?
• Inspired Edmonds to see polytime as effective computation
• Benchmark in the scalability of formalisation

– Second most “complicated” algorithm in LEDA
– Mehlhorn estimated it would be a many person-year

project

Mohammad Abdulaziz September 16, 2025 4 / 14

u1

u2

u3 u4 u5

u6

u7

u8

u9

u10

u11

u12

Top Loop

FIND_MAX_MATCHING (G,M)

γ := AUG_PATH_SEARCH(G,M)
if γ is some augmenting path

return FIND_MAX_MATCHING (G,M⊕ E(γ))
else

returnM
⊕ is the symmetric difference of two sets

The algorithm grows the matching using augmenting paths

Mohammad Abdulaziz September 16, 2025 5 / 14

Top Loop

FIND_MAX_MATCHING (G,M)

γ := AUG_PATH_SEARCH(G,M)
if γ is some augmenting path

return FIND_MAX_MATCHING (G,M⊕ E(γ))
else

returnM
⊕ is the symmetric difference of two sets

The algorithm grows the matching using augmenting paths
A path augments a matching iff

• its two end vertices are free
• for every two consecutive edges in the path, one belongs to

the matching and one does not
Mohammad Abdulaziz September 16, 2025 5 / 14

Top Loop

u1 u2 u3

u4

u5

u6

⊕

u1 u2 u3

u4

u5

u6

≡

u1 u2 u3

u4

u5

u6

Mohammad Abdulaziz September 16, 2025 5 / 14

Top Loop

Mohammad Abdulaziz September 16, 2025 5 / 14

Top Loop

FIND_MAX_MATCHING (G,M)

γ := AUG_PATH_SEARCH(G,M)
if γ is some augmenting path

return FIND_MAX_MATCHING (G,M⊕ E(γ))
else

returnM
⊕ is the symmetric difference of two sets

Correctness:

Lemma (Berge 1957)
A matchingM has maximum cardinality iff it has no augmenting paths

Mohammad Abdulaziz September 16, 2025 5 / 14

Top Loop
(⇒): the symmetric difference of an augmenting path with a
matching is a bigger matching

u1 u2 u3

u4

u5

u6

⊕

u1 u2 u3

u4

u5

u6

≡

u1 u2 u3

u4

u5

u6

Mohammad Abdulaziz September 16, 2025 5 / 14

Top Loop

Mohammad Abdulaziz September 16, 2025 5 / 14

Top Loop

Standard proof of completeness is long
• Lemma: for any two matchingsM andM′, every connected

component of the graphM⊕M′ is either
– a singleton vertex,
– an alternating path, or
– an even alternating cycle.

u1 u2 u3 u4 u5 u6

u7u8

• This is a rather complex construction
• Avoided during formalisation, leading to a shorter proof

Mohammad Abdulaziz September 16, 2025 5 / 14

Augmenting Path/Blossom Search

u1 u2 u3

u4

u5

u6

u7

Build an alternating path forest and use it to find augmeting paths
or blossoms

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

u1 u2 u3

u4

u5

u6

u7

Build an alternating path forest and use it to find augmeting paths
or blossoms
Every vertex is labelled as odd/even depending on its distance
from a forest root

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

u1 u2 u3

u4

u5

u6

u7

Build an alternating path forest and use it to find augmeting paths
or blossoms
Every vertex is labelled as odd/even depending on its distance
from a forest root
Edges are examined only once

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

compute_alt_path(G,M)

ex = ∅ // Set of examined edges
foreach u ∈

⋃
G do label u = None; parent u = None done

U =
⋃

G \
⋃

M // Set of unmatched vertices
foreach u ∈ U do label u = ⟨u, even⟩ done
while (G \ ex) ∩ {e | ∃u ∈ e, r ∈

⋃
G.label u = ⟨r , even⟩} ̸= ∅

// Choose a new edge and label it examined
{u1, u2} = choose (G \ ex) ∩ {{u1, u2} | ∃r .label u1 = ⟨r , even⟩}
ex = ex ∪ {{u1, u2}}
if label u2 = None

// Grow the discovered set of edges from r by two
u3 = choose {u3 | {u2, u3} ∈ M}
ex = ex ∪ {{u2, u3}}
label u2 = ⟨r , odd⟩; label u3 = ⟨r , even⟩; parent u2 = u1; parent u3 = u2

else if ∃s ∈
⋃

G.label u2 = ⟨s, even⟩
// Return two paths from current edge’s tips to unmatched vertex(es)
return ⟨follow parent u1, follow parent u2⟩

return No paths found

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

Partial Correctness: the loop always returns two paths s.t.
• They are alternating
• They each end in a free vertex
• Odd length
• . . .

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

Partial Correctness: the loop always returns two paths s.t.
• They are alternating
• They each end in a free vertex
• Odd length
• . . .

Total Correctness:
• An “odd set cover” (OSC) as big as the matching is a

certificate the matching is maximum
• If the loop terminates w/o returning two paths, then there is a

certificate

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

Rigorous proofs about while loops need “loop invariants”
• Statements about variables that are preserved along the

loop’s execution

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

Rigorous proofs about while loops need “loop invariants”
• Statements about variables that are preserved along the

loop’s execution
Our proof needs 18 loop invariants, e.g.

• If one vertex in a matching edge is labelled, then the other is
labelled with opposite parity

• If a matching edge is examined, then both its vertices are
labelled

• Any examined edge has an odd labelled vertex
• . . .

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

Interesting insights gained:
LEDA had 11 of those invariants
Enough for proving partial correctness
LEDA’s certificate is w.r.t. full graph: {{u2}, {u3,u4,u5}, {u6}}

G ≡ u1 u2 u3

u4

u5

u6

Formalised certificate w.r.t. contracted graph: {{u2}, {u6}}

G/PC ≡ u1 u2 u′ u6

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

Interesting insights gained:
LEDA had 11 of those invariants
Enough for proving partial correctness
The 11 invariants are not enough to prove that
Invariants to do LEDA’s certificate construction are more
complicated than the 18 we formalised
A much shorter proof of Berge’s lemma

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

I gained a deeper understanding of the standard correctness
proof. I had never understood one step in the standard ar-
gument and therefore developed a different correctness argu-
ment for the LEDA book which avoids this step. The fact that
I now understand this step is directly connected to the formal-
ization effort. Working on the formalization forced me to under-
stand the material more deeply than I had done before. The
work also convinced me that my alternative proof is no simpler

Mohammad Abdulaziz September 16, 2025 6 / 14

Augmenting Path/Blossom Search

What is needed:
• We need a graph representation

– Executable (for implementation) and for (abstract)
mathematical reasoning

– Need to connect both representations!
• We need complex combinatorial reasoning about cases

– Matchings, alternating paths, connected components, etc
• Algorithm modelling:

– While-loop: modelled using recursion
– Program state: modelled using records
– Loop invariants: modelled as predicates on states

Mohammad Abdulaziz September 16, 2025 6 / 14

Online Bi-Partite Matching

Setting:
• Bipartite graphs
• One party of the graph arrives online
• The algorithm has to compute its output as its input arrives

– Without knowing the rest of the future input!

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

u1 x1

x2

x3

x4

x5

x6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

u1 x1

x2

x3

x4

x5

x6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

u1

u2

x1

x2

x3

x4

x5

x6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

u1

u2

u3

x1

x2

x3

x4

x5

x6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

u1

u2

u3

u4

x1

x2

x3

x4

x5

x6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

u1

u2

u3

u4

u5

x1

x2

x3

x4

x5

x6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

u1

u2

u3

u4

u5

u6

x1

x2

x3

x4

x5

x6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

RANKING:
• By Karp, Vazirani and Vazirani 1990
• Generalised in many ways

– Weights on vertices, edges, etc.
– Notably, Adwords [Mehta et al. 2007]: models Google’s Ad.

market

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

v1 u4

u2

u6

u1

u5

u3

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

v1 u1

u2

u3

u4

u5

u6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

v1 u1

u2

u3

u4

u5

u6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

v1

v2

u1

u2

u3

u4

u5

u6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

v1

v2

v3

u1

u2

u3

u4

u5

u6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

v1

v2

v3

v4

u1

u2

u3

u4

u5

u6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

u6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

u5

u6

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching
Algorithm 5: Pseudo-code of RANKING
function RANKING(G, π) begin

σ ← a random permutation of U
return online-match(G, π, σ)

end

Algorithm 6: Finding the highest ranked free neighbour
function online-match(G, π, σ) begin
M← ∅
for every arriving vertex v in π do

if ∃ unmatched u s.t. u is v ’s neighbour thenM←M∪
{u, v}, where u is the top-rank unmatched neighbour of v

returnM
end

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching
Theorem statement:

(1− 1
e
)|M| ≤ |RANKING(G, π)|

whereM is the largest matching one could compute knowing the
entire graph a priori.

Average case over all possible permutations of the offline side
• A.k.a. competitiveness of the algorithm
• Probabilistic argument

The ratio is in the limit, w.r.t. the size of the given matching
• Asymptotic argument

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

What is needed:
• We need a graph representation
• We need complex combinatorial reasoning about cases
• Algorithm modelling:
• Modelling online algorithms

– Recursion over list of inputs
• Asymptotic reasoning

– Tooling in Isabelle [Eberl 2019]

• Modelling and reasoning about randomised algorithms
– Giry monads [Eberl et al. 2015]

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

Proof of its competitiveness intensely studied
• Karp, Vazirani and Vazirani 1990
• Goel and A. Mehta 2008
• Birnbaum and C. Mathieu 2008
• Devanur, Jain, and Kleinberg 2013
• Eden, Feldman, Fiat, and Segal 2021

Mohammad Abdulaziz September 16, 2025 7 / 14

Online Bi-Partite Matching

Goal: Formalise the proof of Birnbaum and C. Mathieu
• “On-line bipartite matching made simple.”
• “Simple” combinatorial proof

Joint work with Christoph Madlener

Mohammad Abdulaziz September 16, 2025 7 / 14

Paper (ITP’23) url:

Formalising Karp-Vazirani-Vazirani

Outcome:
• One step is extremely hard to write down in detail

– “Easy structural observation”
– Graphical reasoning is usually very far from a formal

proof
Hypothesis:

• The problem is more than just formalising the proof
• Verbalising a proof uncovers new insights and challenges

Mohammad Abdulaziz September 16, 2025 8 / 14

Matching-LP Connections

Finding a maximum matching in a graph can be encoded as a
linear programming problem

• Could be used to compute matching using LP solvers
• The LP-perspective brought important insights

– E.g. parallelisation of computing perfect matchings [Anari

and Vazirani 2022]

Mohammad Abdulaziz September 16, 2025 9 / 14

Matching-LP Connections
Until now, together with Ralitsa Dordjonova, we proved:

Theorem
Let G be a bipartite graph and let

P ≡ maximise
∑

e∈E(G)

xe : Subject to
∑

e∈incident(v)

xe ≤ 1

P is integral.

Mohammad Abdulaziz September 16, 2025 9 / 14

Matching-LP Connections

What is needed:
• We need a graph representation
• We need complex combinatorial reasoning about cases
• Algorithm modelling
• Modelling online algorithms
• Asymptotic reasoning
• Modelling and reasoning about randomised algorithms
• Totally unimodular matrices [Divason 2020]

• Linear programs, their duality [Thiemann 2023]

• Integral polyhedra, e.g. {x | Ax ≤ b ∧ 0 ≤ x}
• Lemmas/reasoning principles for geometric reasoning

Mohammad Abdulaziz September 16, 2025 9 / 14

Other work

Algorithms for minimum cost flows
• Scaling: a main technique for designing efficient algorithms
• In collab. with Ammer

Mohammad Abdulaziz September 16, 2025 10 / 14

Paper (ITP’24) url:

Other work

Algorithms for minimum cost flows
Algorithms for matroids

• Focus there is on algebraic reasoning
• Much more streamlined compared to directly reasoning about

graphs
• In collab. with Ammer, Meenakshisundaram, and Rimpapa

Mohammad Abdulaziz September 16, 2025 10 / 14

Paper (ITP’25) url:

Other work

Algorithms for minimum cost flows
Algorithms for matroids
Approximation for TSP

• Approximation algorithm; uses a spanning tree and
maximum-weight matching algorithms

Mohammad Abdulaziz September 16, 2025 10 / 14

Verifying Executable Algorithms: Data Types

Another topic I didn’t discuss is how we reason about algorithms
• Recall: I mentioned a goal here is executable algorithms

I want to highlight one big part: data types
• I will focus on graphs, which are a principal object in

combinatorial optimisation

Mohammad Abdulaziz September 16, 2025 11 / 14

Verifying Executable Algorithms: Data Types

We want an abstract representation to perform as much
mathematical reasoning as possible

• E.g. Berge’s lemma
Use existing concepts, e.g. sets, to represent digraphs:

′v ×′ v set

Why?
• Less irrelevant details, better out of the box automation

Functions, e.g. neighbourhood of a vertex, is defined as

Mohammad Abdulaziz September 16, 2025 11 / 14

Verifying Executable Algorithms: Data Types

Problem: this representation is not immediately executable
For that, we need a programmatic data type
We use abstract data types (ADTs)

• (un)directed/multi/hyper graphs, linear programs, SAT
formulae, etc

Mohammad Abdulaziz September 16, 2025 11 / 14

Verifying Executable Algorithms: Data Types

Mohammad Abdulaziz September 16, 2025 11 / 14

Verifying Executable Algorithms: Data Types

Based on such an ADT, an executable version of a vertex’s
neighbourhood is

Recall that the abstract version was

Mohammad Abdulaziz September 16, 2025 11 / 14

Verifying Executable Algorithms: Data Types

Problem: we may have proved many facts on the mathematical
representation of a graph ’v × ’v set

• Do we have to reprove these facts?

Mohammad Abdulaziz September 16, 2025 11 / 14

Verifying Executable Algorithms: Data Types

Solution: data type refinement
Devise abstraction functions connecting similar concepts

Using abstraction lemmas like these

We have automation to ’transfer’ facts about ADTs

Mohammad Abdulaziz September 16, 2025 11 / 14

Future Directions: Library Design

Graph representation
• One goal is to devise a single graph representation
• Difficult:

– Executable algorithms vs. mathematical statements
– Directed/undirected/multi/hyper graphs
– Explicit set of vertices vs. not

Mohammad Abdulaziz September 16, 2025 12 / 14

Future Directions: Library Design

Graph representation
Computational object/algorithm representation

• Functional program: native to the theorem prover
• While-combinators: enable the use of program logics with
• Deeply embedded language: clear resource semantics

– Modelling randomised, online, interactive computation

Mohammad Abdulaziz September 16, 2025 12 / 14

Future Directions: Library Design

Graph representation
Computational object/algorithm representation
Data type refinement using relational parametericity

• Automated refinement [Lammich 2013]

– Steep learning curve, but less cumbersome if well-used
• Conditional transfer, a la [Cohen et al. 2025]

Mohammad Abdulaziz September 16, 2025 12 / 14

Future Directions: Formalisations

Edmonds’ algorithm for weighted matching (with Ammer)
• Connects matching, LPs, primal-dual paradigm
• Most complicated implemented algorithm in LEDA

Mohammad Abdulaziz September 16, 2025 13 / 14

Future Directions: Formalisations

Edmonds’ algorithm for weighted matching (with Ammer)
Resource/hardness analysis for optimisation algorithms/problems

• Complexity of approximation
• Done wrt a probabilistic computation model

Mohammad Abdulaziz September 16, 2025 13 / 14

Future Directions: Formalisations

Edmonds’ algorithm for weighted matching (with Ammer)
Resource/hardness analysis for optimisation algorithms/problems
Micali-Vazirani algorithm for maximum cardinality matching

• First algorithm to achieve fastest running time of O(
√

nm)
• No accepted proof for 40 years

Mohammad Abdulaziz September 16, 2025 13 / 14

Future Directions: Formalisations

Giving a computer-aided proof of the Micali-Vazirani maximum
matching algorithm, which is among the hardest combinatorial
optimization results, is akin to climbing the Everest or building
a World Champion Go program – it may not have direct uses,
but it demonstrates the limits of our capabilities, so that faced
with other challenging tasks, we may approach them with more
confidence

Mohammad Abdulaziz September 16, 2025 13 / 14

Questions?

