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Representing mathematical structures in Type Theory

Provide a representation for mathematical objects.

Two extremes:
• a mathematical object is represented by several pieces,

e.g.
- a group is a set, a neutral, a binary operation etc.
- a measurable space is a set, a distinguished set of sets, closed under complement and

countable unions and intersections.
• a mathematical object is represented by a single piece, e.g.

- a group is an element of groupType,
- a measurable space is an element of measurableType
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Representing mathematical structures in Type Theory

Two extremes:
• a mathematical object is represented by several pieces, or
• a mathematical object is represented by a single piece

Proper regroupments may lead to more concisness, e.g.
• poly : ringType -> ringType, instead of
• poly : forall R : Type, (R -> bool) -> Type,

poly_add : forall R, (R -> R -> R) -> (poly R -> poly R -> poly R). etc.

or less, e.g.
• Z : Type, Z_group : groupType, Z_ring : ringType, etc.
• prod T T : Type, prod_group G G : groupType, prod_ring R R : ringType, etc.
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Structures in Mathematics

Standard definition:
• A carrier in Set / Type,
• A set of constants in the carrier, and operations,
• Proofs of the axioms of the structure

E.g. an (additive) monoid is given by
• a carrier T : Type,
• a constant zero : T and a binary operation add : T -> T -> T

• three axioms:
associativity of the addition, left and right neutrality of zero.
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Implementations in DTT (unbundled classes)
[MSCS2011]

Class is_monoid T (zero : T) (add : T -> T -> T) := {
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.
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Implementations in DTT (semi-bundled classes)

Class is_monoid (T : Type) : Type := {
zero : T;
add : T -> T -> T;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.
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Class monoid_is_group T : is_monoid T -> Type :={
opp : T -> T;
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Class is_monoid (T : Type) : Type := {

zero : T;
add : T -> T -> T;
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add0r : forall x, 0 + x = x;
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}.

Class is_group (T : Type) : Type := {
zero : T;
add : T -> T -> T;
opp : T -> T;
addrA : associative add;
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subrr : forall x, x + (- x) = 0;
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Implementations in DTT (bundled record)

Structure monoidType : Type := {
sort :> Type;
zero : sort;
add : sort -> sort -> sort;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.
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Implementations in DTT
(simplified packed classes)

Class is_monoid (T : Type) : Type := {
zero : T;
add : T -> T -> T;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.

Structure monoidType : Type := {
sort :> Type;
class : is_monoid sort;

}.
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Implementations in DTT (packed classes)
[TPHOLs 2009]

Record is_monoid (T : Type) : Type := { zero ; ..}.

Structure monoidType : Type :=
{ sort :> Type; class : is_monoid sort }.

Record monoid_is_group T : is_monoid T -> Type := ...

Record is_group (T : Type) := {
monoid_of_group : is_monoid T;
group_of_group : monoid_is_group T monoid_of_group

}.

Structure groupType : Type :=
{ sort :> Type; class : is_group sort }.
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Implementation in DTT (other)

Many other possibilities:

• Modules a la OCaml (not first class in Rocq!),

• Fully-bundled typeclasses (bad!),

• Telescopes (bad!),

• Records without inference (tedious!),

• ...
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Implementations in proof assistants

The variety of representations is out there!
• Rocq/Mathcomp: Packed classes.
• Rocq/Math-Classes: Fully unbundled records

(+ special case for varieties).
• Lean/Mathlib: Semi-bundled records.
• Agda: Bundled and semi-bundled records.
• ...

Representations work hand in hand with tooling.
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More than “just records”
• Rocq/Mathcomp: canonicals
+ heavy boilerplate + validator [IJCAR K.S. paper]

• Rocq/Math-Classes: type classes + boilerplate + hints
• Lean/Mathlib: type classes + priorities + linter
• Agda: records + open and renaming directives

None of these encoding are straightforward:
• they all need expert knowledge and/or checkers/linters,
• some encodings are unnecessarily verbose,
• some known design problems might be detected too late (e.g. priority of instance,

typeclass indexing, forgetful inheritance, etc)

Hierarchy Builder provides a DSL!
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Hierarchies in formalization
Purpose:

• factor theorems, using the theory of each structure,
• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• provide several ways to instantiate them
• predictability of inferred instance,
• robustness of user code with regard to new declarations.
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Hierarchy Builder in two bullets

1. Hierarchy Builder provides a DSL to generate and extend a hierarchy from
minimal input.

2. Hierarchy Builder lets you amend a hierarchy without breaking your code.

Hierarchy Builder adopts the point of view that Type Theory is an assembly language,
and takes care of generating structures in a uniform way across whole sets of libraries.

Cohen, Roux, Sakaguchi, Tassi, . . . – Hierarchy Builder – September 15th, 2025 14



Hierarchy Builder in practice

• Hierarchy Builder generates/extends a hierarchy using Mathematical
Components packed class methodology.

... but this is changing!

• Hierarchy Builder enforces a discipline of mixins and factories to make client code
robust to hierarchy changes.

• Hierarchy Builders lets us encode built-in safety measures (e.g. detection of
overlapping instances and non-forgetful inheritance)
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Applications of Hierarchy Builder

• Mathcomp ≥ 2.0
Porting the Mathematical Components library to HB
Reynald Affeldt, Xavier Allamigeon, Yves Bertot, Quentin Canu, CC, Pierre Roux,
Kazuhiko Sakaguchi, Enrico Tassi, Laurent Théry, Anton Trunov.
https://hal.inria.fr/hal-03463762/ and https://github.com/math-comp/math-comp/pull/733

• Mathcomp Analysis
cf https://github.com/math-comp/analysis

• Monae: Monadic effects and equational reasoning in Rocq
cf https://github.com/affeldt-aist/monae

• . . .
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Porting the Mathematical Components library

10 people, 2 weeks, 140kLOC
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Structures relating to each other

Examples:
• Monoid ← Group ← Ring ← Field ← ...
• Normed Space → Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.

Arrows represent both
• Extensions: add operations, axioms or combine structures
• Entailment/Induction/Deduction/Generalization.
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More examples [IJCAR]

”Calculus”
structures

”Algebraic”
structures

PartialOrder

Lattice

TotalOrder

AddGroup

Lmodule

(Com)(Unit)Ring

IntegralDomain

Field OrderedDomain

OrderedField

RealClosedField ArchimedeanField

TopologicalSpace

UniformSpace

Complete

NormedAddGroup

NormedModule

CompleteNormedModule
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Structure extension vs Structure entailment

Structure extension Structure entailment

• Compositional: no need to start from
scratch every time. (E.g. the product
of two groups is a group)

• Noisy internal definition of a structure.
(E.g. defining a commutative monoid
from a monoid, one gets an
unnecessary axiom),

• Non-robust when adding new
intermediate structures,

• Flexible: no need to cut structures into
small bits,

• Robust: we can fix operations and
axioms once and for all.

• Not suitable for inference: Major
breakage when arbitrary entailment is
automatic. (cf IJCAR Competing
Inheritance Paths in Dependent Type
Theory)
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HB Design
The best of two the worlds:

• Extension, through mixins for automatic inference
• Entailment, through factories for smart instantiation

Five primitives:
1. HB.mixin Record <mixin name> T of <dependencies> := {..}.

2. HB.factory Record <factory name> T of <dependencies> := {..}.

3. HB.builders Context T (f : <factory name> T). ... HB.end.

4. HB.structure Definition <structure name> := { T & <dependencies> }

5. HB.instance Definition <name> : <axioms name> <type> := ...

see https://github.com/math-comp/hierarchy-builder
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A very short example

https://github.com/math-comp/hierarchy-builder/tree/master/examples/GReTA_talk
HB.mixin Record is_monoid (M : Type) := {

zero : M;
add : M -> M -> M;
addrA : associative add; (* add is associative. *)
add0r : forall x, 0 + x = x; (* zero is neutral *)
addr0 : forall x, x + 0 = x; (* wrt add. *)

}.
HB.structure Definition Monoid := { M of is_monoid M }.

HB.instance Definition Z_is_monoid : is_monoid Z
:= is_monoid.Build Z 0%Z Z.add Z.add_assoc Z.add_0_l Z.add_0_r.
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Breaking down monoid

We split the monoid structure into a semi-group and a monoid
HB.mixin Record is_semigroup (S : Type) := {

add : S -> S -> S;
addrA : associative add;

}.
HB.structure Definition SemiGroup := { S of is_semigroup S }.
HB.mixin Record semigroup_is_monoid (M : Type) of is_semigroup M := {

zero : M;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.
HB.structure Definition Monoid := { M of is_semigroup M & semigroup_is_monoid M }.

But we must provide is_monoid again.
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Recovering the lost mixin (is_monoid)

It becomes a factory with the exact same contents as before
HB.factory Record is_monoid (M : Type) := {

zero : M;
add : M -> M -> M;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.
HB.builders Context (M : Type) (f : is_monoid M).
HB.instance Definition is_monoid_semigroup : is_semigroup M := ... (* trivial *)

HB.instance Definition is_monoid_monoid : semigroup_is_monoid M := ... (* trivial *)
HB.end

Factories can only be used at instantiation time:
HB.instance Definition Z_is_monoid : is_monoid Z := ...
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Measurable spaces

We may define a measurable space as follows:
HB.mixin Record isMeasurable T := {

measurable : set (set T) ;
measurable0 : measurable set0 ;
measurableC : forall A, measurable A -> measurable (~` A) ;
measurable_bigcup : forall F : (set T)^nat, (forall i, measurable (F i)) ->

measurable (\bigcup_i (F i))
}.

#[short(type="measurableType")]
HB.structure Definition Measurable := {T of isMeasurable T }.
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Measurable spaces (modified)

But we need to
HB.factory Record isMeasurable T := {

measurable : set (set T) ;
measurable0 : measurable set0 ;
measurableC : forall A, measurable A -> measurable (~` A) ;
measurable_bigcup : forall F : (set T)^nat, (forall i, measurable (F i)) ->

measurable (\bigcup_i (F i))
}.

HB.builders Context T of isMeasurable T.
(* ... *)
HB.end.

#[short(type="measurableType")]
HB.structure Definition Measurable := {T of isMeasurable T }.
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Semiring and rings of sets
So that we can introduce semirings of sets and rings of set
HB.mixin Record isSemiRingOfSets T := {

measurable : set (set T) ;
measurable0 : measurable set0 ;
measurableI : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable;

}.

#[short(type="semiRingOfSetsType")]
HB.structure Definition SemiRingOfSets := {T of isSemiRingOfSets T}.

HB.mixin Record SemiRingOfSets_isRingOfSets T of SemiRingOfSets T :=
{ measurableU : @setU_closed T measurable }.

#[short(type="ringOfSetsType")]
HB.structure Definition RingOfSets :=

{T of SemiRingOfSets T & SemiRingOfSets_isRingOfSets T }.
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A hierarchy of measures
We also have a hierarchy of functions on measurable spaces:
HB.mixin Record isContent (T : semiRingOfSetsType) (R : numFieldType)

(mu : set T -> \bar R) := {
measure_ge0 : forall x, 0 <= mu x ;
measure_semi_additive : semi_additive mu

}.
#[short(type=content)]
HB.structure Definition Content (T : semiRingOfSetsType) (R : numFieldType) :=

{ mu & isContent T R mu }.

HB.mixin Record Content_isMeasure (T : semiRingOfSetsType)
(R : numFieldType) (mu : set T -> \bar R) of Content mu := {

measure_semi_sigma_additive : semi_sigma_additive mu }.

#[short(type=measure)]
HB.structure Definition Measure (T : semiRingOfSetsType) (R : numFieldType) :=
{mu of Content mu & Content_isMeasure T R mu }.

Cohen, Roux, Sakaguchi, Tassi, . . . – Hierarchy Builder – September 15th, 2025 28



Upcoming contribution: wrapping

E.g defining measure spaces.

HB.mixin Record hasMeasure R T := { meas : T -> R }.

HB.structure Record measureType :=
{ T of Measurable T & hasMeasure R T & Measure meas }.

Thanks to Matteo Calosci and Enrico Tassi
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Upcoming contribution: typeclass-like inference

The current target of HB is Canonical structures.
This forces the following style:
forall R : ringType, x + y = 0

However HB defines both the class Ring R and the structure ringType.

Soon there it should support simultaneously Structures and Typeclasses styles.
forall R `{Ring R}, x + y = 0
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Meta programming in Rocq-ELPI
Rocq-ELPI turned out to be a very comfortable meta-programming language for this
(approx. 5000 loc).

Elpi is a programming language, [LPAR-20]
• prolog-like: programs and data are clauses
• with binders, unification and constraints
• capable of representing Rocq terms in HOAS, its typing judgements, evaluation

and unification.
Rocq-Elpi is a plugin for Rocq that lets one use Elpi as a meta-programming
language, in particular

• one can write new commands and tactics,
• one can add new definitions, inductive, sections, modules, etc to the environment,
• one can maintain databases across Rocq files
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Two main HB databases

• The predicate from stores an association between a factory F, a mixin M and the term
B that can be used to build mixin M from factory F.
pred from o:factoryname, o:mixinname, o:term.

• The predicate factory-requires stores an association between a factory and a list of
mixins that are pre-requisites to inhabiting this factory.
pred factory-requires o:factoryname, o:list mixinname.

e.g. monoid_is_group T has the prerequisite that T is a monoid.
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Why use HB?

• High-level commands to declare structures and instances, easy to use.

• Predictable outcome of inference,
• Takes into account the evolution of knowledge

- which is formalized, and
- which the user has.

The two knowledge do not need to be correlated.

• Robustness with regard to new declaration and even changes of internal
implementation.

• We envision changing the target representation, the design pattern at use, without
changing the surface language and declarations.
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Thanks! Questions?
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