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Work done over the last 8ish years

In this talk: work by Dominik Kirst, Gert Smolka, Dominique Larchey, Wendling,
Andrej Dudenhefner.

The Rocq Undecidability Library has contributions by Dominique Larchey-Wendling,
Andrej Dudenhefner, Janis Bailitis, Fabian Brenner, Edith Heiter, Marc Hermes,
Johannes Hostert, Dominik Kirst, Mark Koch, Fabian Kunze, Gert Smolka, Simon
Spies, Dominik Wehr, Maxi Wuttke, Nils Lauermann, Fabian Kunze, and Benjamin
Peters.
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How to formalise text books on computability theory?

Why is this area particularly hard to formalise?



Recipe to write textbooks on computability

1. Introduce favourite model of computation
1.1 Prove s theorem (currying)
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3.2 Rice's theorem
3.3 Reduction theory (Myhill isomorphism theorem, Post'’s simple and hypersimple sets)

3.4 Oracle computation and Turing reducibility
3.5 Kolmogorov complexity
3.6 Kleene-Post and Post's hierarchy theorem

4. Prove undecidability of concrete problems (PCP, CFGs)
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Computability proofs machine-checked in proof assistants

1. Introduce favourite model of computation v
1.1 Prove s theorem (currying) v
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. introdueeintuitivecomputability-and-Chureh—Furingthesis

3. Develop computability theory relying-en—Chureh—Furingthesis
3.1 Undecidability of the halting problem v
3.2 Rice's theorem
3.3 Reduction theory ?
3.4 Oracle computation and Turing reducibility ?
3.5 Kolmogorov complexity ?
3.6 Kleene-Post and Post's hierarchy theorem ?

4. Prove undecidability (PCP, CFGs) ?



Theorem V For every m,n > 1, there exists a recursive function s,™ of
m + 1 variables such that for all x, y1, . . . , Ym,

Azgg - - zn[¢;m+n)(ylj Y 7315 PR Jzﬂ)l = 5952')“(1.1}1 ..... Ym)®

Proof. Take the case m = n = 1. (Proof is analogous for the other
cases.) Consider the family of all partial functions of one variable which
are expressible as Az[¢,®(y,2)] for various # and y. TUsing our standard
formal characterization for functions of two variables, we can view this
as a new formal characterization for a class of partial recursive functions
of one variable. By Part III of the Basic Result, there exists a uniform
effective procedure for going from sets of instructions in this new charac-
terization to sets of instructions in the old. Hence, by Church’s Thesis,
there must be a recursive function f of two variables such that

N2 (1,2)] = er@uw-

This f is our desired s;%.X

The informal argument by appeal to Church’s Thesis and Part III
of the Basic Result can be replaced by a formal proof. (Indeed, the func-
tions s,™ can be shown to be primitive recursive.) We refer the reader
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Is there a need for machine-checked computability proofs?

1932 Gédel claims without proof that his decidability proof for the [3*v23*, all, (0)]
fragment of FOL could be extended to include equality.

.. Lots of results depend on Godel's claim.
1984 Goldfarb is tasked to prove Godel’s claim, proves undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn: decidability of semi-unification (POPL).
1990 Kfoury, Tiuryn, and Urzyczyn: undecidability of semi-unification (LICS).

1967 Minsky introduces 2-counter machines with inc and dec/jmp on zero,
proves undecidability of 2CM-Halt with inc and dec/jmp on nonzero

2022 Dudenhefner proves decidability of 2CM-Halt with inc and dec/jmp on zero



State of the art in machine-checked proofs

Theory up to universal machines and Rice’s theorem
2011 A-calculus in HOL4 by Norrish
2017 weak call-by-value A-calculus in Rocq by Forster and Smolka
2019 p-recursive functions in Lean by Carneiro
2020 PVSO in PVS by Ferreira Ramos et al.

Miscellaneous results
2019 Bayer et al. prove Hilbert's 10th problem undecidable in Isabelle
2021 Kunze and Gaher prove Cook-Levin theorem in Rocq

2021 Forster, Kunze, Wuttke, Smolka formalise polynomial time equivalence of Turing
machines and call-by-value A-calculus

2023 Balbach proves Cook-Levin theorem in Isabelle
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m + 1 variables such that for all x, y1, . . . , Ym,
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Proof. Take the case m = n = 1. (Proof is analogous for the other
cases.) Consider the family of all partial functions of one variable which
are expressible as Az[¢,®(y,2)] for various # and y. TUsing our standard
formal characterization for functions of two variables, we can view this
as a new formal characterization for a class of partial recursive functions
of one variable. By Part III of the Basic Result, there exists a uniform
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Constructive mathematics to the rescue

Church-Turing thesis:
“Every intuitively computable function is u-recursive.”

Church’s rule in computational systems:
whenever one can define a closed f : N — N,
one could have actually defined a p-recursive function computing f

PFf:N—-N

() = 3c : N. the c-th p-recursive function computes f

10



Analytic Synthetic

Decidability

df : N — B.Vx. px < fx = true df : N — B.Vx. px <> fx = true
A f is computable
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Analytic Synthetic

Decidability

df : N — B.Vx. px < fx = true df : N — B.Vx. px <> fx = true
A f is computable

Semi-decidability

df N —= N.Vx. px ¢ x| df N —= N.Vx. px < fx |
A f is computable

Many-one reducibility

f : N — N.Vx. px <> q(fx) If : N — N.Vx. px <> q(fx)
A f is computable

Enumerability, one-one reducibility, truth-table reducibility, ...

11



Mpyhill isomorphism theorem

Let X and Y be enumerable discrete types, p: X — P, andq: Y — P. If p =1 g and
q =1 p, then there exist f : X — Y and g : Y — X such that for all x : X and y : Y:

px < q(fx), qy < p(gy), e(fx)=x, f(gy)=y

jww Felix Jahn and Gert Smolka [CPP 23]
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Church’s rule is not true in classical systems...

0Ff:N—N

() = Jc : N. the c-th u-recursive function computes f

..because the characteristic function of the self-halting problem
is not general recursive.
fn:= if p,n] then 1 else 0

Formally in ZF:

fi={(n1) | @and}U{(n,0) [ nnt}
Now f is a total set-theoretic function because f is ..
¥ functional

¥ total (proof by contradiction, i.e. LEM)

Troelstra and van Dalen [1988] 13



CT is consistent in constructive systems

CT :=Vf : N — N.the c-th u-recursive function computes f

Heyting arithmetic, Kleene [1945]

Russian style constructive mathematics, Markov [1954]

In any system that has semantics via topoi, Hyland [1982]
HoTT (MLTT + propositional truncation + univalence), Swan and Uemura [2019]
MLTT, Pédrot [2024]

14



Slogans of (Rocq and Lean’s) Type Theory

Types and functions are native
e Inductive types N, B, A x B and so on

e The function type A — B consists exactly of programs in a
total, strongly typed programming language

Propositions behave constructively
e Propositions are types
e Proofs are programs
e (Total, functional) relations are functions A — B — P

e Classical principles are independent:

DNE :=VP:P. —-P = P LEM :=VP:P. PV P
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Types and functions are native
e Inductive types N, B, A x B and so on

e The function type A — B consists exactly of programs in a
total, strongly typed programming language

Propositions behave constructively
e Propositions are types in a separate, impredicative universe P
e Proofs are programs, no large eliminations from P to T
e (Total, functional) relations are functions A — B — P

e Classical principles are independent:

DNE :=VP:P. —-P = P LEM :=VP:P. PV P
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CT is not inconsistent in CIC

fn:= if p,n ]| then true else false

However, we can define the graph relation G: N —- B — P

Gnb := ppn | < b = true

¥ G is functional
¥ G is total (using proof by contradiction, i.e. LEM)

16
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ACpp:=VR:A— B—P.(Va3db. Rab) — 3f : A— B.Va. Ra(fa)
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Curry Howard isomorphism:
‘A proof of db.pb is a pair.‘ ‘A proof of Va.pa is a function.‘

‘A proof of Ya.db. Rab is a function returning a pair.‘
¥ Vp: (3a. Ba) = P. (V(a: A)(b: Ba). p(a, b)) — V(s : Ja. Ba). ps
K Vp:(3a. Ba) = T. (¥Y(a: A)(b: Ba). p(a, b)) — V(s : Ja. Ba). ps
X7 :(Ja. Ba)— A
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Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACap :=VR:A— B— P.(Va.3b. Rab) — 3f : A — B.Va. Ra(fa)

The law of excluded middle and the axiom of countable choice together are
inconsistent with CT:
LEM A ACNJB — =CT

17



Fext

DNE <—— LEM DGP ——> WLEM ADC <— AC

\L \l/ L MP N >< ~ \l/
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/ Ve
/ //
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The following are consistent in CIC:
o CT

e LEM
e functional extensionality, propositional extensionality (implies in particular PI)

e AC for relations: “Every total relation contains a total functional subrelation.”
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Textbook Computability Theory in Rocq

1. Introduce favourite model of computation

1.1 Prove s theorem (currying)
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom (SCT, EPF, EA)

3. Develop computability theory relying on axiom

3.1 Undecidability of the halting problem

3.2 Rice's theorem

3.3 Reduction theory (Myhill isomorphism theorem, Post’s simple and hypersimple sets)
3.4 Oracle computation and Turing reducibility

3.5 Kolmogorov complexity

3.6 Kleene-Post and Post's hierarchy theorem

4. Prove undecidability of concrete problems (PCP, CFGs)
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Textbook Computability Theory in Rocq

1. Introduce favourite model of computation

1.1 Prove s theorem (currying)
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom (SCT, EPF, EA)

3. Develop computability theory relying on axiom

3.1 Undecidability of the halting problem
3.2 Rice's theorem
3.3 Reduction theory (Myhill isomorphism theorem, Post’s simple and hypersimple sets)

3.4 Oracle computation and Turing reducibility
3.5 Kolmogorov complexity
3.6 Kleene-Post and Post's hierarchy theorem

4. Prove undecidability of concrete problems (PCP, CFGs, needs CT)

NSNS |
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The Rocq Library of Undecidability Proofs




Work done over the last 7ish years, mainly 2017-2022

The Rocq Undecidability Library has contributions by

Dominique Larchey-Wendling, Andrej Dudenhefner, Dominik Kirst,

Janis Bailitis, Fabian Brenner, Edith Heiter, Marc Hermes, Johannes Hostert, Mark
Koch, Fabian Kunze, Gert Smolka, Simon Spies, Dominik Wehr, Maxi Wuttke, Niklas
Miick, Haoyi Zeng, Nils Lauermann, and Benjamin Peters.
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Synthetic undecidability via reducibility

Analytic definition
Up = —3f. p-recursive f A ...

Lemma (Analytic)

There is no u-recursive enumerator for the complement of the halting problem.

Theorem (Analytic)

If Halttp =< p, then p is not decidable.
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Synthetic undecidability via reducibility

Analytic definition
Up = —3f. p-recursive f A ...

Lemma (Synthetic)

There is no enumerator for the complement of the halting problem,
assuming CT.

Theorem (Synthetic)

If Halttpm =<m p, then p is not decidable, assuming CT.
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Synthetic undecidability via reducibility

Analytic definition
Up = —3f. p-recursive f A ...

Lemma (Synthetic)

There is no enumerator for the complement of the halting problem,
assuming CT.

Theorem (Synthetic)

If Halttpm =<m p, then p is not decidable, assuming CT.

Synthetic definition
Up = Halttm =m p

22



Synthetic undecidability via reducibility in different systems

e in Rocq: U can be defined in P, proofs can be classical
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Synthetic undecidability via reducibility in different systems

e in Rocq: U can be defined in P, proofs can be classical
e.g.: subsingleton sets are always decidable

e in Lean: U must be defined in T, only verification can be classical
= need to manually check axiom-freeness of reduction
= strange theorems: countable unions of r.e. sets are r.e.

23



Why does this all work?

Rocq and Lean are programming languages, proofs are not supposed to be executed.
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Why does this all work?

Rocq and Lean are programming languages, proofs are not supposed to be executed.
These de doctorat
UNIVERSITE PARIS VII prientees
L'Université de Paris-Sud

U.F.R. Scientifique d'Orsay

THESE DE DOCTORAT

PIERRE LETOUZEY

Spécialité : INFORMATIQUE

par Christine PAULIN-MOHRING

Sujet

Programmation fonctionnelle certifiée

Lextraction de programmes dans |

E

dans le

tion de programmes
alcul des Constructions

M. LEROY Xavier président

M. BERARDI Stefano rapportenrs
M. Moni Je

Mme BENZAKEN V
M. SCHWICHTENBERG Helmut

examinateurs

Mme  PAULIN Christine directeur
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Why does this all work?

Rocq and Lean are programming languages, proofs are not supposed to be executed.

UNIVERSITE PARIS VII

THESE DE DOCTORAT

Spécialité : INFORMATIQUE

Préseutée par Christine PAULIN-MOHRING

Extraction de programmes
dans le Calcul des Constructions

(Total) programming languages remain

N do
These de doctorat

L'Université de Paris-Sud
U.F.R. Scientifique d'Orsay

PIERRE LETOUZEY

Programmation fonctionnelle certifiée
L'es

action de programmes dans I'assistant Coq

M
M
M
Mme
M

Mme  PAULIN Ch

systems for constructive mathematics!
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Synthetic undecidability

Analytic definition
Up = —3f. p-recursive f A ...

Lemma (Analytic)

There is no u-recursive enumerator for the complement of the halting problem.

Theorem (Analytic)

Given a p-recursive decider for an undecidable p, there is a p-recursive enumerator for
the complement of the halting problem:

Dp — S(HaItTM)
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Synthetic undecidability

Analytic definition
Up = —3f. p-recursive f A ...

Lemma (Synthetic)

There is no enumerator for the complement of the halting problem,
assuming CT.

Theorem (Synthetic)

Given a decider for an undecidable p, there is an enumerator for
the complement of the halting problem:

Dp — S(HaItTM)
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Synthetic undecidability

Analytic definition
Up = —3f. p-recursive f A ...

Lemma (Synthetic)

There is no enumerator for the complement of the halting problem,
assuming CT.

Theorem (Synthetic)

Given a decider for an undecidable p, there is an enumerator for
the complement of the halting problem:

Dp — S(HaItTM)
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Synthetic undecidability

Analytic definition
Up = —3f. p-recursive f A ...

Lemma (Synthetic)

There is no enumerator for the complement of the halting problem,
assuming CT.

Synthetic definition
Up := Dp — E(Halttym)

25



The Rocq library of undecidability proofs

Halt,

]

Haltty

i

Haltgsm

i

Haltcpm

!

HalteracTrAN

H10

|

Halt,

with Dominique Larchey-Wendling, Gert Smolka, Fabian Kunze, Max Wuttke ...



The Rocq library of undecidability proofs
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The Rocq library of undecidability proofs
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The Rocq library of undecidability proofs

FOL

Halt, <
Halty, — Haltsgryy —> SRH —— SR —— MPCP —3 PCP BPCP —

! | | e

Haltgsm TSR SSRoq PCS¢ SysFrc CIIP Arith
Haltcpm Haltyy, —> Haltcy, SysFryp SemiU CFP HzF

|— 1< |

CFI FSAT

>l

HalteracTran — EDIOC Haltcy, — SSemiU
|
H10 —— H10, H10C —> SysFiy.,  IMSEL EILL SLSAT
l =" l
Ha|tﬂ SHOU H10UC IPICZ CLL <— ILL MSLSAT
| N
Unif, HOU Unifs FMsetC
T )

~100k lines of code, 14 contributers



Seed problems

e Halting problem for single-tape two-symbol Turing machines
e Post correspondence problem (PCP)

e Halting problem for two counters machines due to Minsky

e Halting problem for FRACTRAN programs due to Conway

e Satisfiability of elementary Diophantine constraints
of theformx=1,x=y+zorx=y- -z

e Halting problem for one counter machines
e Solvability of finite multiset constraint

e Simple semi-Thue system 01 rewriting
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Decidable problems

e Two-counter Minsky Program Machine Halting. The definition follows exactly
Minsky’s book (Chapter 11, Table 11.1-1), and is different from two counter
machines.

e Reversible Two-counter Machine Halting.
e Two-counter Machine Uniform Mortality.
e Two-counter Machine Uniform Boundedness.

e First-order unification

28



Hardest problems

e Hilbert’s tenth problem (Davis, Putnam, Robinson, Matiyasevich)
Higher-order unification (Huet, Goldfarb, Dowek)

Semi-unification (Kfoury, Tiuryn, and Urzyczyn)

Subtyping and type checking of System F (Wells)
Lambda definability (Loader)

Forster and Larchey-Wendling [2018], Forster and Spies [2019], Dudenhefner [2020, 2021, 2024] 2



First-order library, modal logic

e Undecidability and Trakthenbrot's theorem

e Completeness theorems and constructive analysis

e Shortest incompleteness proof ever, relying on synthetic computability
e Tennenbaum'’s theorem

e Lob's theorem

e Ldéwenheim Skolem

e Bi-intuitionistic logic, (propositional) modal logics

Dominik Kirst with Forster, Smolka [2019], Larchey-Wendling [2020], Forster, Wehr [2020], Hagemeier [2022],
Hermes [2022], Hostert, Dudenhefner [2022], Shillito [2024], Bailitis, Forster [2025], Zeng [2025]. 30



Models of computation

e Equivalence proofs for computability of relations Nk - N — P
e |dentification of the weak call-by-value A-calculus as sweet spot

o ad-hoc extraction framework doing automatic computability proofs
o can be used to prove many-one equivalence between problems
o even works as a foundation for (analytic) complexity theory, see Fabian Kunze's work
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Models of computation

e Equivalence proofs for computability of relations Nk - N — P
e |dentification of the weak call-by-value A-calculus as sweet spot

o ad-hoc extraction framework doing automatic computability proofs
o can be used to prove many-one equivalence between problems
o even works as a foundation for (analytic) complexity theory, see Fabian Kunze's work

e A good framework for automatic computability proofs is missing in any PA.
= We do not have good enough meta-programming in any PA (yet)
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Cl, PRs, etc

one branch per Rocq versions, new results only go to newest branch

e amain branch where Rocq devs used to send commits to keep Rocq's Cl working

not in the Rocq Cl anymore because of new rules

bad code quality: we valued engagement and growth more than maintainability —
but still never had to drop code
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A typical thesis project at Saarland University

e Split into 270h “seminar” phase and 3 months thesis phase

e Weekly 1h meetings, in crunch phase maybe more

e No Rocq code in meetings, ever. Practice to condense problems for advisors.

e First talk: after 90h, explanation of the problem, 15min

e Second talk: after 260h, recap and goals of the project, 15min

e Final talk: Mimicking conference talk, 20min

e Accompanied by ~60 page thesis

e Offer: we co-write paper, or we write paper for you, publish at ITP, CPP, FSCD
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Conclusion

e Computability theory proofs have high amount of invisible math

e Lean, Rocq, Agda allow keeping this invisible for computability due to
computational / constructive foundations

e Undecidability library covers almost all basic problems, running out of good
student projects

e Self-contained elementary formalisation projects are ideal intro to research

e We know how to do computability theory, even with oracles, based on axioms or
automation

e Open problem: How to do complexity theory?
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Conclusion

e Computability theory proofs have high amount of invisible math

e Lean, Rocq, Agda allow keeping this invisible for computability due to
computational / constructive foundations

e Undecidability library covers almost all basic problems, running out of good
student projects

e Self-contained elementary formalisation projects are ideal intro to research

e We know how to do computability theory, even with oracles, based on axioms or
automation

e Open problem: How to do complexity theory?

Thank you!
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