
The Lean standard library
Markus Himmel, Lean FRO



Lean’s “five pillars”



Lean’s “five pillars”

● Formal mathematics



Lean’s “five pillars”

● Formal mathematics
● Software and hardware verification



Lean’s “five pillars”

● Formal mathematics
● Software and hardware verification
● (Verified) software development



Lean’s “five pillars”

● Formal mathematics
● Software and hardware verification
● (Verified) software development
● AI research for mathematics and code synthesis



Lean’s “five pillars”

● Formal mathematics
● Software and hardware verification
● (Verified) software development
● AI research for mathematics and code synthesis
● New math and computer science education methodologies



What’s in the Lean distribution?



What’s in the Lean distribution?

● The language (parser, elaborator, kernel, compiler, runtime, …)



What’s in the Lean distribution?

● The language (parser, elaborator, kernel, compiler, runtime, …)
● The language server



What’s in the Lean distribution?

● The language (parser, elaborator, kernel, compiler, runtime, …)
● The language server
● Tactics (basic like exact or rewrite, advanced like grind or 

bv_decide)



What’s in the Lean distribution?

● The language (parser, elaborator, kernel, compiler, runtime, …)
● The language server
● Tactics (basic like exact or rewrite, advanced like grind or 

bv_decide)
● The metaprogramming framework



What’s in the Lean distribution?

● The language (parser, elaborator, kernel, compiler, runtime, …)
● The language server
● Tactics (basic like exact or rewrite, advanced like grind or 

bv_decide)
● The metaprogramming framework
● The standard library



What is the standard library?



What is the standard library?

It’s what makes Lean into a general-purpose programming language.



What is the standard library?

It’s what makes Lean into a general-purpose programming language.

It’s what makes Lean into a verification platform.



What is the standard library?

It’s what makes Lean into a general-purpose programming language.

It’s what makes Lean into a verification platform.

It is a public API.



What is/will be in the standard library?

1. Core types and operations
a. Basic types
b. Numeric types, including floating point numbers
c. Containers
d. Strings and formatting

2. Language constructs
3. Libraries
4. Operating system abstractions



What is/will be in the standard library?

1. Core types and operations
2. Language constructs

a. Ranges and iterators
b. Comparison, ordering, hashing and related type classes
c. Basic monad infrastructure

3. Libraries
4. Operating system abstractions



What is/will be in the standard library?

1. Core types and operations
2. Language constructs
3. Libraries

a. Random numbers
b. Dates and times

4. Operating system abstractions



What is/will be in the standard library?

1. Core types and operations
2. Language constructs
3. Libraries
4. Operating system abstractions

a. Concurrency and parallelism primitives
b. Asynchronous I/O
c. FFI helpers
d. Environment, file system, processes
e. Locales



Who is the standard library for?



Who is the standard library for?

All Lean users!



Who is the standard library for?

All Lean users!

● Programmers



Who is the standard library for?

All Lean users!

● Programmers
○ Programmers writing verified software



Who is the standard library for?

All Lean users!

● Programmers
○ Programmers writing verified software
○ Metaprogrammers



Who is the standard library for?

All Lean users!

● Programmers
○ Programmers writing verified software
○ Metaprogrammers
○ Lean developers



Who is the standard library for?

All Lean users!

● Programmers
○ Programmers writing verified software
○ Metaprogrammers
○ Lean developers
○ Library authors



Who is the standard library for?

All Lean users!

● Programmers
○ Programmers writing verified software
○ Metaprogrammers
○ Lean developers
○ Library authors

● Mathlib users



Who is the standard library for?

All Lean users!

● Programmers
○ Programmers writing verified software
○ Metaprogrammers
○ Lean developers
○ Library authors

● Mathlib users
● Software and hardware verification users



Who is the standard library for?

All Lean users!

● Programmers
○ Programmers writing verified software
○ Metaprogrammers
○ Lean developers
○ Library authors

● Mathlib users
● Software and hardware verification users
● Individuals evaluating Lean for use



Goals of the standard library



Goals of the standard library



Goals of the standard library

Useful for real applications



Goals of the standard library

Useful for real applications

High-quality and polished: comprehensive, consistent, systematic, optimized, 
verified, testable, tested, documented, interconnected, stable, comprehensible, 
visible, benchmarked, …



Goals of the standard library

Useful for real applications

High-quality and polished: comprehensive, consistent, systematic, optimized, 
verified, testable, tested, documented, interconnected, stable, comprehensible, 
visible, benchmarked, …

Excellent out-of-the-box experience for software development and software 
verification



Setting a high bar



Setting a high bar



Setting a high bar

End goal: make formal verification economical and commonplace



Setting a high bar

End goal: make formal verification economical and commonplace

Challenge: things don’t just need to be possible, but easy and productive



Setting a high bar

End goal: make formal verification economical and commonplace

Challenge: things don’t just need to be possible, but easy and productive

Need:



Setting a high bar

End goal: make formal verification economical and commonplace

Challenge: things don’t just need to be possible, but easy and productive

Need:

● No missing material



Setting a high bar

End goal: make formal verification economical and commonplace

Challenge: things don’t just need to be possible, but easy and productive

Need:

● No missing material
● No inconsistencies or other papercuts



Setting a high bar

End goal: make formal verification economical and commonplace

Challenge: things don’t just need to be possible, but easy and productive

Need:

● No missing material
● No inconsistencies or other papercuts
● No discoverability issues



Setting a high bar

End goal: make formal verification economical and commonplace

Challenge: things don’t just need to be possible, but easy and productive

Need:

● No missing material
● No inconsistencies or other papercuts
● No discoverability issues

Need a principled approach to quality!



Tooling



Tooling



Tooling

Tooling and processes lead to fewer mistakes: CI, linters, code review.



Tooling

Tooling and processes lead to fewer mistakes: CI, linters, code review.

There are gaps!





Beliefs and assumptions



Beliefs and assumptions



Beliefs and assumptions

● Quality assurance will always have a manual component



Beliefs and assumptions

● Quality assurance will always have a manual component
● Not all rules can be fully formalized, and many rules will have exceptions



Beliefs and assumptions

● Quality assurance will always have a manual component
● Not all rules can be fully formalized, and many rules will have exceptions
● Global consistency of the library is desirable



Beliefs and assumptions

● Quality assurance will always have a manual component
● Not all rules can be fully formalized, and many rules will have exceptions
● Global consistency of the library is desirable
● To understand where we are, we need to be able to visualize and track the 

state of the library



Early experiments



Early experiments



Early experiments



Early experiments



Next steps



Next steps



The result: Grove



The result: Grove



The result: Grove

Tool for tracking changes to the entire library



The result: Grove

Tool for tracking changes to the entire library

Basic question: what do we know? (and when do we no longer know it?)



The result: Grove

Tool for tracking changes to the entire library

Basic question: what do we know? (and when do we no longer know it?)

Declaratively and imperatively describe the library and how it should look



The result: Grove

Tool for tracking changes to the entire library

Basic question: what do we know? (and when do we no longer know it?)

Declaratively and imperatively describe the library and how it should look

Full power of Lean metaprogramming for extracting state



The result: Grove

Tool for tracking changes to the entire library

Basic question: what do we know? (and when do we no longer know it?)

Declaratively and imperatively describe the library and how it should look

Full power of Lean metaprogramming for extracting state

Web UI for analyzing the library



The result: Grove

Tool for tracking changes to the entire library

Basic question: what do we know? (and when do we no longer know it?)

Declaratively and imperatively describe the library and how it should look

Full power of Lean metaprogramming for extracting state

Web UI for analyzing the library

Detects changes in PRs



Grove impressions



Grove impressions



Grove impressions



Grove impressions



Grove impressions



Grove impressions



Grove architecture


