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● Formal mathematics
● Software and hardware verification
● (Verified) software development
● AI research for mathematics and code synthesis
● New math and computer science education methodologies
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It’s what makes Lean into a general-purpose programming language.

It’s what makes Lean into a verification platform.

It is a public API.
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What is/will be in the standard library?

1. Core types and operations
2. Language constructs
3. Libraries
4. Operating system abstractions

a. Concurrency and parallelism primitives
b. Asynchronous I/O
c. FFI helpers
d. Environment, file system, processes
e. Locales
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Who is the standard library for?

All Lean users!

● Programmers
○ Programmers writing verified software
○ Metaprogrammers
○ Lean developers
○ Library authors

● Mathlib users
● Software and hardware verification users
● Individuals evaluating Lean for use
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Goals of the standard library

Useful for real applications

High-quality and polished: comprehensive, consistent, systematic, optimized, 
verified, testable, tested, documented, interconnected, stable, comprehensible, 
visible, benchmarked, …

Excellent out-of-the-box experience for software development and software 
verification
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Setting a high bar

End goal: make formal verification economical and commonplace

Challenge: things don’t just need to be possible, but easy and productive

Need:

● No missing material
● No inconsistencies or other papercuts
● No discoverability issues

Need a principled approach to quality!
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Tooling and processes lead to fewer mistakes: CI, linters, code review.

There are gaps!





Beliefs and assumptions



Beliefs and assumptions



Beliefs and assumptions

● Quality assurance will always have a manual component



Beliefs and assumptions

● Quality assurance will always have a manual component
● Not all rules can be fully formalized, and many rules will have exceptions



Beliefs and assumptions

● Quality assurance will always have a manual component
● Not all rules can be fully formalized, and many rules will have exceptions
● Global consistency of the library is desirable



Beliefs and assumptions

● Quality assurance will always have a manual component
● Not all rules can be fully formalized, and many rules will have exceptions
● Global consistency of the library is desirable
● To understand where we are, we need to be able to visualize and track the 

state of the library
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The result: Grove

Tool for tracking changes to the entire library

Basic question: what do we know? (and when do we no longer know it?)

Declaratively and imperatively describe the library and how it should look

Full power of Lean metaprogramming for extracting state

Web UI for analyzing the library

Detects changes in PRs
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Grove architecture


