
Post-processing of Rocq Proof Scripts

Alexandre Jean and Nicolas Magaud
Lab. ICube UMR 7357 CNRS Université de Strasbourg

EuroProofNet Workshop on Proof Libraries
Orsay, September 15, 2025

1 / 27

Outline

1 Motivations

2 Proof Scripts Post-processing with Rocq-ditto

3 Case Studies

4 Combining Transformations on Proof Scripts

5 Conclusions and Perspectives

2 / 27

Motivations

• Proof assistants like Rocq are increasingly popular.
• However formal proofs remain highly technical and are

especially difficult to reuse.
Once the proof effort is done, the proof scripts are left as
they are and they often break when upgrading to a more
recent version of the prover.

• Our goal : setting up some preventive maintenance tools to
make porting proofs easier in the future.

• Possible transformations :
• Adding structure to proof scripts
• Replacing call to auto/ltac tactics with the actual proof steps
• Making all variables names implicit or explicit
• Inlining auxiliary lemmas
• Decomposing a proof script into atomic steps (debug)
• etc.

3 / 27

Rocq Tactic Language

• Basic tactics : intros, apply, elim, induction, split, lia, nia
• Tacticals (to combine tactics in different ways) :

• tac1 ; tac2
• solve [tac1 | tac2 | tac3]
• first [tac1 | tac2 | tac3]
• . . .

• Advanced tactics : auto, intuition
• A first example : transforming a proof script into an

equivalent single-step proof script.
• Example : distributivity of or (\/) over and (/\)

4 / 27

A User-written Script and
the Equivalent Single-step Script

Lemma foo : forall A B C : Prop,
A \/ (B /\ C) -> (A\/B)/\(A\/C).

Proof.
intros; destruct H.
split.
left; assumption.
left; assumption.
destruct H.
split.
right; assumption.
right; assumption.
Qed.

Proof.
intros; destruct H;

[split;
[left; assumption
| left; assumption]

| destruct H ;
split;
[right; assumption
| right; assumption]].

Qed.

5 / 27

The Inverse Transformation

• Compact proof scripts are :
• nice for libraries (esp. to compile them efficiently),
• but painful for debugging.

• Hence, we also implement the inverse transformation :
fulling expanding and structuring proof scripts.

6 / 27

Back to our Example
Lemma foo : forall A B C : Prop,

A \/ (B /\ C) -> (A\/B)/\(A\/C).

Proof.
intros; destruct H;

[split;
[left; assumption
| left; assumption]

| destruct H ;
split;
[right; assumption
| right; assumption]].

Qed.

Proof.
intros.
destruct H.

+ split.
- left.

assumption.
- left.

assumption.
+ destruct H.

split.
- right.

assumption.
- right.

assumption.
Qed.

7 / 27

Some Results
• Examples : files from the Arith library of Rocq and from the

Highschool library of GeoRocq
• Transformations achieved in both directions
• One-step proof scripts improves compilation time by 5%

8 / 27

Outline

1 Motivations

2 Proof Scripts Post-processing with Rocq-ditto

3 Case Studies

4 Combining Transformations on Proof Scripts

5 Conclusions and Perspectives

9 / 27

Rocq-ditto

• An external tool to perform source-to-source
transformations of Rocq proof scripts

• Implemented as an Ocaml library handling Rocq AST 1

• Uses rocq-lsp to get a Rocq AST from a file
• Allows for easy Rocq-AST rewriting by automatically

moving other AST nodes when adding, removing or
replacing a node

• Dual representation of proofs : proof-tree and linear
structure

• Allows for speculative execution
• Provides quoting and unquoting functions

1. Abstract Syntax Trees
10 / 27

Internal Representation of Proof Scripts

Rocq proof script associated Rocq-ditto proof tree

Lemma add_zero:
forall n : nat,
n + 0 = n.

Proof.
induction n.
reflexivity.
simpl.
rewrite IHn.
reflexivity.

Qed.

Lemma add_zero :
∀n ∈ nat , n + 0 = n

Proof.

induction n

reflexivity simpl

rewrite IHn

reflexivity

11 / 27

How to Define a Transformation with Rocq-ditto

Transformation : A transformation is a function f that takes a
proof as input and returns a list of transformation steps drawn
from the set

{Remove(id), Replace(id , new_node), Add(new_node),
Attach(new_node, attach_position, anchor_id)}

• Remove(id) : remove the node identified by id .
• Replace(id , new_node) : replace the node identified by id

with new_node
• Add(new_node) : add a new node to the AST
• Attach(new_node,attach_position,anchor_id) : places

new_node on a position relative to the node with the id
anchor_id .

12 / 27

Outline

1 Motivations

2 Proof Scripts Post-processing with Rocq-ditto

3 Case Studies

4 Combining Transformations on Proof Scripts

5 Conclusions and Perspectives

13 / 27

Four Use Cases

• Structuring / compacting proof scripts
• Replacing auto calls by their actual proof steps
• Explicit naming of automatically introduced variables
• Constructivization of the GeoCoq library

14 / 27

Replacing auto calls by their computational contents

Lemma bar : forall P Q R S : Prop,
(P -> Q) -> (Q -> R) -> (R -> S) -> (P \/ S) ->
(Q \/ R \/ S).

Proof.
intros
P Q R S HPQ QRR RSS H.

destruct H.
auto.
right; right.
assumption.

Qed.

Proof.
intros

P Q R S HPQ QRR RSS H.
destruct H.
simple apply or_intror.
simple apply or_introl.
simple apply QRR.
simple apply HPQ.
assumption.
right; right.
assumption.
Qed.

15 / 27

Using info_auto to retrieve the actual proof steps

• info_auto provides insights about what auto does.
• Using speculative execution, we can rebuild the actual

proof steps.

simple apply or_intror.
simple apply or_intror.
simple apply RSS.
simple apply QRR.
simple apply HPQ.

simple apply or_introl.
simple apply QRR.
simple apply HPQ.
assumption.

simple apply or_intror.

simple apply or_intror.

simple apply RSS.

simple apply QRR.

simple apply HPQ.

simple apply or_introl.

simple apply QRR.

simple apply HPQ.

assumption.

16 / 27

Explicitly Naming all Variables

• Deals with all tactics generating new names
(intros, inversion, induction, destruct, etc.)

• Transforms a fragile proof script

intros.
rewrite IHa.

• into a robust proof script

intros n m Hnm IHa.
rewrite IHa.

• As we assume the proof script compiles without errors,
then the names are appropriate.

• The automatically assigned names are explicitly specified.

17 / 27

Constructivization of the GeoCoq library

• GeoCoq : a formal Rocq library, formalizing geometry
including its arithmetization

• Based on Tarski axioms for geometry and decidability of
point equality

• Contructivizing the arithmetization of geometry :
• The arithmetization of geometry can be obtain without

assuming any decidability property.
• It relies on Beeson’s main result in A constructive version of

Tarski’s geometry.

18 / 27

Decidability

Excluded Middle

Decidability in Type

Decidability in Prop (GeoCoq)

Stability

19 / 27

Stability

Definition
The stability of an unary predicate P states

∀x ,¬¬P(x) → P(x)

It is trivial to show that if an unary predicate P is decidable,
then it is also stable.

20 / 27

Stability of Predicates

• Logical connectives
We have : ∀AB, stableA =⇒ stableB =⇒ stableA ∧ B
However, it does not hold A ∨ B. We introduce a new
negative formula, ¬(¬A ∧ ¬B), noted A ⊔ B, which
preserves the stability of propositions.

• Stability of equality, congruence and betweenness
• Stability of point equality : ¬¬X = Y =⇒ X = Y
• We deduce the stability of the congruence predicate Cong,

but not of the betweenness predicate Bet, we could only
prove its stability under a non-degeneracy assumption :
∀ABC,A ̸= B =⇒ ¬¬BetABC =⇒ BetABC

21 / 27

Using Rocq-ditto to Make Proof Scripts Constructive

• Useful transformations
• One that admits proofs involving exists in the statement.
• One that replaces usual predictates into stable ones.
• One that replaces classical tactics like left with

constructive alternatives, here stab_left.

Lemma by_left : forall A B : Prop,
A -> A _/ B.
Proof. unfold or_dM; tauto. Qed.

Ltac stab_left :=
match goal with
| |- ?A _/ ?B => apply (by_left A B)
end.

• Still work in progress. Rocq-ditto is a nice helper to
translate the GeoCoq library into a constructive one.

22 / 27

Outline

1 Motivations

2 Proof Scripts Post-processing with Rocq-ditto

3 Case Studies

4 Combining Transformations on Proof Scripts

5 Conclusions and Perspectives

23 / 27

Combining Transformations on Proof Scripts

• What is a improved proof script ?
• Depends on the user, their individual needs
• More compilation-efficient? more readable? shorter?
• Issues to be addressed :

• Reversibility
• Compositionality
• Appropriate order of the transformations
• Optimality issues? w.r.t performance? w.r.t. readability?

24 / 27

Outline

1 Motivations

2 Proof Scripts Post-processing with Rocq-ditto

3 Case Studies

4 Combining Transformations on Proof Scripts

5 Conclusions and Perspectives

25 / 27

Conclusions and Perspectives

• Achievements
• A framework rocq-ditto to handle Rocq proof scripts
• Allows refactoring of proof scripts in various ways

(factorizing, adding structure, inlining, . . .)
• Multi-criteria optimization

(accomodating various proof styles, various purposes, etc.)
• Implements some specific transformations to achieve the

constructivization of the GeoCoq library
• Future Work

• Removing all occurences of each named variable
• Scaling the infrastructure to a whole library handler
• More abstract data-structures to represent proof scripts?
• Integration to vscoq?

26 / 27

Thanks ! Questions?

https://github.com/blackbird1128/coq-ditto

[1] Alexandre Jean. A library for the automated transformation of
Rocq AST. Rocqshop 2025, Reykjavik, Iceland, Sept. 2025.

[2] Alexandre Jean, Pierre Boutry and Nicolas Magaud. An
Automated Approach towards Constructivizing the GeoCoq Library.
Automated Deduction in Geometry (ADG). July 2025.

[3] Alexandre Jean and Nicolas Magaud. Transformations
automatisées de preuves Coq. In Approches Formelles dans
l’Assistance au Développement du Logiciel (AFADL), Pau, France,
June 2025.

27 / 27

https://github.com/blackbird1128/coq-ditto

	Motivations
	Proof Scripts Post-processing with Rocq-ditto
	Case Studies
	Combining Transformations on Proof Scripts
	Conclusions and Perspectives

