
A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Algebraic Geometry in Lean’s mathematical
library mathlib

Christian Merten

Utrecht University

Sep 15, 2025



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

What is algebraic geometry?

• Classically: Study of zeros of polynomials over a field.

X = {x ∈ kn | 0 = f1(x) = . . . = fk(x)}.

• Reformulation in the language of schemes by Grothendieck:
Instead of studying the set X, study the ring of rational
functions on X.

A = k[T1, . . . , Tn]/(f1, . . . , fk).

• General construction: Spec associates an affine scheme to any
commutative ring.

• Affine schemes can be completely understood via the study of
commutative rings.

• A scheme is a geometric object, that locally looks like an affine
scheme.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

What is algebraic geometry?

• Classically: Study of zeros of polynomials over a field.

X = {x ∈ kn | 0 = f1(x) = . . . = fk(x)}.

• Reformulation in the language of schemes by Grothendieck:
Instead of studying the set X, study the ring of rational
functions on X.

A = k[T1, . . . , Tn]/(f1, . . . , fk).

• General construction: Spec associates an affine scheme to any
commutative ring.

• Affine schemes can be completely understood via the study of
commutative rings.

• A scheme is a geometric object, that locally looks like an affine
scheme.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

What is algebraic geometry?

• Classically: Study of zeros of polynomials over a field.

X = {x ∈ kn | 0 = f1(x) = . . . = fk(x)}.

• Reformulation in the language of schemes by Grothendieck:
Instead of studying the set X, study the ring of rational
functions on X.

A = k[T1, . . . , Tn]/(f1, . . . , fk).

• General construction: Spec associates an affine scheme to any
commutative ring.

• Affine schemes can be completely understood via the study of
commutative rings.

• A scheme is a geometric object, that locally looks like an affine
scheme.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

What is algebraic geometry?

• Classically: Study of zeros of polynomials over a field.

X = {x ∈ kn | 0 = f1(x) = . . . = fk(x)}.

• Reformulation in the language of schemes by Grothendieck:
Instead of studying the set X, study the ring of rational
functions on X.

A = k[T1, . . . , Tn]/(f1, . . . , fk).

• General construction: Spec associates an affine scheme to any
commutative ring.

• Affine schemes can be completely understood via the study of
commutative rings.

• A scheme is a geometric object, that locally looks like an affine
scheme.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

What is algebraic geometry?

• Classically: Study of zeros of polynomials over a field.

X = {x ∈ kn | 0 = f1(x) = . . . = fk(x)}.

• Reformulation in the language of schemes by Grothendieck:
Instead of studying the set X, study the ring of rational
functions on X.

A = k[T1, . . . , Tn]/(f1, . . . , fk).

• General construction: Spec associates an affine scheme to any
commutative ring.

• Affine schemes can be completely understood via the study of
commutative rings.

• A scheme is a geometric object, that locally looks like an affine
scheme.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Outline

A bit of history

Library overview

Definition of schemes

Reduction to affine schemes

Future work



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Short history

2003 Formalization of affine schemes in Rocq (formerly Coq) by
Chicli.

2018 First definition of schemes by Buzzard and two undergrad-
uates Hughes and Lau in Lean 3.

2020 Definition of schemes enters mathlib (Lean 3) with contri-
butions by Livingston, Fernández Mir and Morrison.

2021 Elliptic curves as cubic equations by Angdinata and Buz-
zard.

2022 Definition of schemes in Isabelle by Bordg, Paulson, Li.
2022 Construction of fibred products by Yang (Lean 3).
2023 Port of definition to mathlib4 (Lean 4).
2024 Etale site in mathlib4 .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Short history

2003 Formalization of affine schemes in Rocq (formerly Coq) by
Chicli.

2018 First definition of schemes by Buzzard and two undergrad-
uates Hughes and Lau in Lean 3.

2020 Definition of schemes enters mathlib (Lean 3) with contri-
butions by Livingston, Fernández Mir and Morrison.

2021 Elliptic curves as cubic equations by Angdinata and Buz-
zard.

2022 Definition of schemes in Isabelle by Bordg, Paulson, Li.
2022 Construction of fibred products by Yang (Lean 3).
2023 Port of definition to mathlib4 (Lean 4).
2024 Etale site in mathlib4 .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Short history

2003 Formalization of affine schemes in Rocq (formerly Coq) by
Chicli.

2018 First definition of schemes by Buzzard and two undergrad-
uates Hughes and Lau in Lean 3.

2020 Definition of schemes enters mathlib (Lean 3) with contri-
butions by Livingston, Fernández Mir and Morrison.

2021 Elliptic curves as cubic equations by Angdinata and Buz-
zard.

2022 Definition of schemes in Isabelle by Bordg, Paulson, Li.
2022 Construction of fibred products by Yang (Lean 3).
2023 Port of definition to mathlib4 (Lean 4).
2024 Etale site in mathlib4 .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Short history

2003 Formalization of affine schemes in Rocq (formerly Coq) by
Chicli.

2018 First definition of schemes by Buzzard and two undergrad-
uates Hughes and Lau in Lean 3.

2020 Definition of schemes enters mathlib (Lean 3) with contri-
butions by Livingston, Fernández Mir and Morrison.

2021 Elliptic curves as cubic equations by Angdinata and Buz-
zard.

2022 Definition of schemes in Isabelle by Bordg, Paulson, Li.
2022 Construction of fibred products by Yang (Lean 3).
2023 Port of definition to mathlib4 (Lean 4).
2024 Etale site in mathlib4 .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Short history

2003 Formalization of affine schemes in Rocq (formerly Coq) by
Chicli.

2018 First definition of schemes by Buzzard and two undergrad-
uates Hughes and Lau in Lean 3.

2020 Definition of schemes enters mathlib (Lean 3) with contri-
butions by Livingston, Fernández Mir and Morrison.

2021 Elliptic curves as cubic equations by Angdinata and Buz-
zard.

2022 Definition of schemes in Isabelle by Bordg, Paulson, Li.

2022 Construction of fibred products by Yang (Lean 3).
2023 Port of definition to mathlib4 (Lean 4).
2024 Etale site in mathlib4 .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Short history

2003 Formalization of affine schemes in Rocq (formerly Coq) by
Chicli.

2018 First definition of schemes by Buzzard and two undergrad-
uates Hughes and Lau in Lean 3.

2020 Definition of schemes enters mathlib (Lean 3) with contri-
butions by Livingston, Fernández Mir and Morrison.

2021 Elliptic curves as cubic equations by Angdinata and Buz-
zard.

2022 Definition of schemes in Isabelle by Bordg, Paulson, Li.
2022 Construction of fibred products by Yang (Lean 3).

2023 Port of definition to mathlib4 (Lean 4).
2024 Etale site in mathlib4 .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Short history

2003 Formalization of affine schemes in Rocq (formerly Coq) by
Chicli.

2018 First definition of schemes by Buzzard and two undergrad-
uates Hughes and Lau in Lean 3.

2020 Definition of schemes enters mathlib (Lean 3) with contri-
butions by Livingston, Fernández Mir and Morrison.

2021 Elliptic curves as cubic equations by Angdinata and Buz-
zard.

2022 Definition of schemes in Isabelle by Bordg, Paulson, Li.
2022 Construction of fibred products by Yang (Lean 3).
2023 Port of definition to mathlib4 (Lean 4).

2024 Etale site in mathlib4 .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Short history

2003 Formalization of affine schemes in Rocq (formerly Coq) by
Chicli.

2018 First definition of schemes by Buzzard and two undergrad-
uates Hughes and Lau in Lean 3.

2020 Definition of schemes enters mathlib (Lean 3) with contri-
butions by Livingston, Fernández Mir and Morrison.

2021 Elliptic curves as cubic equations by Angdinata and Buz-
zard.

2022 Definition of schemes in Isabelle by Bordg, Paulson, Li.
2022 Construction of fibred products by Yang (Lean 3).
2023 Port of definition to mathlib4 (Lean 4).
2024 Etale site in mathlib4 .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

A word on Lean and mathlib

• Lean is a dependently typed interactive theorem prover, initially
developed by Leonardo de Moura at Microsoft Research and
since 2023 mainly developed by the Lean FRO.

• Mathlib is a user-maintained mathematical library for Lean,
covering a broad range of mathematics.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

A word on Lean and mathlib

• Lean is a dependently typed interactive theorem prover, initially
developed by Leonardo de Moura at Microsoft Research and
since 2023 mainly developed by the Lean FRO.

• Mathlib is a user-maintained mathematical library for Lean,
covering a broad range of mathematics.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Attributions

• The algebraic geometry library in mathlib has seen contributions
by many people in the past, including Angdinata, Buzzard,
Commelin, Morrison, Riou, Xu, Yang, Zhang, M.

• Angdinata and Xu are the driving forces behind elliptic curves.
• The schemes library has recently been mainly developed by

Andrew Yang and C.M.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Attributions

• The algebraic geometry library in mathlib has seen contributions
by many people in the past, including Angdinata, Buzzard,
Commelin, Morrison, Riou, Xu, Yang, Zhang, M.

• Angdinata and Xu are the driving forces behind elliptic curves.

• The schemes library has recently been mainly developed by
Andrew Yang and C.M.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Attributions

• The algebraic geometry library in mathlib has seen contributions
by many people in the past, including Angdinata, Buzzard,
Commelin, Morrison, Riou, Xu, Yang, Zhang, M.

• Angdinata and Xu are the driving forces behind elliptic curves.
• The schemes library has recently been mainly developed by

Andrew Yang and C.M.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

For the algebraic geometry experts: What do we have?

• Limit properties of the category of schemes: existence of finite
limits and coproducts, properties of inverse limits

• Group law on elliptic curves
• Many properties of morphisms, e.g., closed immersion, finite,

separated, universally closed, locally of finite type, smooth,
unramified, étale, etc.

• Valuative criteria
• Ideal sheafs
• Big and small Zariski and étale sites
• Projective space



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

For the algebraic geometry experts: What do we have?

• Limit properties of the category of schemes: existence of finite
limits and coproducts, properties of inverse limits

• Group law on elliptic curves

• Many properties of morphisms, e.g., closed immersion, finite,
separated, universally closed, locally of finite type, smooth,
unramified, étale, etc.

• Valuative criteria
• Ideal sheafs
• Big and small Zariski and étale sites
• Projective space



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

For the algebraic geometry experts: What do we have?

• Limit properties of the category of schemes: existence of finite
limits and coproducts, properties of inverse limits

• Group law on elliptic curves
• Many properties of morphisms, e.g., closed immersion, finite,

separated, universally closed, locally of finite type, smooth,
unramified, étale, etc.

• Valuative criteria
• Ideal sheafs
• Big and small Zariski and étale sites
• Projective space



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

For the algebraic geometry experts: What do we have?

• Limit properties of the category of schemes: existence of finite
limits and coproducts, properties of inverse limits

• Group law on elliptic curves
• Many properties of morphisms, e.g., closed immersion, finite,

separated, universally closed, locally of finite type, smooth,
unramified, étale, etc.

• Valuative criteria

• Ideal sheafs
• Big and small Zariski and étale sites
• Projective space



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

For the algebraic geometry experts: What do we have?

• Limit properties of the category of schemes: existence of finite
limits and coproducts, properties of inverse limits

• Group law on elliptic curves
• Many properties of morphisms, e.g., closed immersion, finite,

separated, universally closed, locally of finite type, smooth,
unramified, étale, etc.

• Valuative criteria
• Ideal sheafs

• Big and small Zariski and étale sites
• Projective space



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

For the algebraic geometry experts: What do we have?

• Limit properties of the category of schemes: existence of finite
limits and coproducts, properties of inverse limits

• Group law on elliptic curves
• Many properties of morphisms, e.g., closed immersion, finite,

separated, universally closed, locally of finite type, smooth,
unramified, étale, etc.

• Valuative criteria
• Ideal sheafs
• Big and small Zariski and étale sites

• Projective space



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

For the algebraic geometry experts: What do we have?

• Limit properties of the category of schemes: existence of finite
limits and coproducts, properties of inverse limits

• Group law on elliptic curves
• Many properties of morphisms, e.g., closed immersion, finite,

separated, universally closed, locally of finite type, smooth,
unramified, étale, etc.

• Valuative criteria
• Ideal sheafs
• Big and small Zariski and étale sites
• Projective space



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Definition of Schemes

structure Scheme extends (X : LocallyRingedSpace) where
local_affine :

∀ x : X,
∃ (U : OpenNhds x) (R : CommRingCat),

Nonempty
(X.restrict U ≅ Spec.obj (op R))

• To introduce a scheme, we do:
variable (X : Scheme)

• Main reason: many arguments in algebraic geometry use category
theoretical tools.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Definition of Schemes

structure Scheme extends (X : LocallyRingedSpace) where
local_affine :

∀ x : X,
∃ (U : OpenNhds x) (R : CommRingCat),

Nonempty
(X.restrict U ≅ Spec.obj (op R))

• To introduce a scheme, we do:
variable (X : Scheme)

• Main reason: many arguments in algebraic geometry use category
theoretical tools.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Definition of Schemes

structure Scheme extends (X : LocallyRingedSpace) where
local_affine :

∀ x : X,
∃ (U : OpenNhds x) (R : CommRingCat),

Nonempty
(X.restrict U ≅ Spec.obj (op R))

• To introduce a scheme, we do:
variable (X : Scheme)

• Main reason: many arguments in algebraic geometry use category
theoretical tools.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

(Un)bundled geometric objects

• The differential geometry library follows the unbundled design:
variable {𝕜 : Type} [NontriviallyNormedField 𝕜]
{E : Type} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{H : Type} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H}
{M : Type} [TopologicalSpace M] [ChartedSpace H M]
{n : WithTop ℕ∞} [IsManifold I n M]

• Main advantage: A manifold is automatically also a topological
space and every result immediately applies.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

(Un)bundled geometric objects

• The differential geometry library follows the unbundled design:
variable {𝕜 : Type} [NontriviallyNormedField 𝕜]
{E : Type} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{H : Type} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H}
{M : Type} [TopologicalSpace M] [ChartedSpace H M]
{n : WithTop ℕ∞} [IsManifold I n M]

• Main advantage: A manifold is automatically also a topological
space and every result immediately applies.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

From commutative algebra to algebraic geometry

• Reminder: affine schemes are of the form Spec(R) for some ring
R and every scheme locally looks like an affine scheme.

• To reason about schemes, one reduces the problem to affine
schemes and then solves the resulting commutative algebra
problem.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

From commutative algebra to algebraic geometry

• Reminder: affine schemes are of the form Spec(R) for some ring
R and every scheme locally looks like an affine scheme.

• To reason about schemes, one reduces the problem to affine
schemes and then solves the resulting commutative algebra
problem.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

From commutative algebra to algebraic geometry

Figure: EGA II

Figure: Hartshorne, Algebraic Geometry

Figure: Stacks Project



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

From commutative algebra to algebraic geometry

Figure: EGA II

Figure: Hartshorne, Algebraic Geometry

Figure: Stacks Project



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

From commutative algebra to algebraic geometry

Figure: EGA II

Figure: Hartshorne, Algebraic Geometry

Figure: Stacks Project



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Open subsets

• A consequence of bundling: An open subset of a scheme is not a
scheme.

• In particular:
example (X : Scheme) (U : Opens X) (hU : IsAffineOpen U) :

∃ (R : CommRingCat), U = Spec R :
sorry

does not typecheck!
• Workaround: develop the API in terms of abstract open

immersions f : U ⟶ X .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Open subsets

• A consequence of bundling: An open subset of a scheme is not a
scheme.

• In particular:
example (X : Scheme) (U : Opens X) (hU : IsAffineOpen U) :

∃ (R : CommRingCat), U = Spec R :
sorry

does not typecheck!

• Workaround: develop the API in terms of abstract open
immersions f : U ⟶ X .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Open subsets

• A consequence of bundling: An open subset of a scheme is not a
scheme.

• In particular:
example (X : Scheme) (U : Opens X) (hU : IsAffineOpen U) :

∃ (R : CommRingCat), U = Spec R :
sorry

does not typecheck!
• Workaround: develop the API in terms of abstract open

immersions f : U ⟶ X .



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties

• Define a predicate:
def IsLocal (P : Scheme → Prop) : Prop :=
∀ (X : Scheme), P X ↔ (∀ (U : X.affineOpens), P U)

and an induction principle:
lemma of_isLocal (P : Scheme → Prop) (h : IsLocal P) (X : Scheme)

(hX : ∀ R, P (Spec R)) :
P X :=

/- ... -/

• What about properties involving multiple objects and morphisms
between them?



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties

• Define a predicate:
def IsLocal (P : Scheme → Prop) : Prop :=
∀ (X : Scheme), P X ↔ (∀ (U : X.affineOpens), P U)

and an induction principle:
lemma of_isLocal (P : Scheme → Prop) (h : IsLocal P) (X : Scheme)

(hX : ∀ R, P (Spec R)) :
P X :=

/- ... -/

• What about properties involving multiple objects and morphisms
between them?



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties

• Define a predicate:
def IsLocal (P : Scheme → Prop) : Prop :=
∀ (X : Scheme), P X ↔ (∀ (U : X.affineOpens), P U)

and an induction principle:
lemma of_isLocal (P : Scheme → Prop) (h : IsLocal P) (X : Scheme)

(hX : ∀ R, P (Spec R)) :
P X :=

/- ... -/
• What about properties involving multiple objects and morphisms

between them?



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties of morphisms

• A property of morphisms can be local at the source and at the
target.

• For the target, we have:
class IsLocalAtTarget (P : MorphismProperty Scheme) : Prop where
iff_of_openCover :

∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Y.OpenCover),
P f ↔ ∀ i, P (𝒰.pullbackHom f i)



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties of morphisms

• A property of morphisms can be local at the source and at the
target.

• For the target, we have:
class IsLocalAtTarget (P : MorphismProperty Scheme) : Prop where
iff_of_openCover :

∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Y.OpenCover),
P f ↔ ∀ i, P (𝒰.pullbackHom f i)



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties of morphisms

• This yields structured proofs:
lemma foo {X Y : Scheme} (f : X ⟶ Y) : P f := by
wlog hY : ∃ R, Y = Spec R
· rw [LocalAtTarget.iff_of_openCover Y.affineCover]

/- ... -/
obtain ⟨R, rfl⟩ := hY
wlog hX : ∃ S, X = Spec S
· /- ... -/
obtain ⟨S, rfl⟩ := hX
obtain ⟨φ, rfl⟩ := Spec.map_surjective f
/- ... -/

• Clear separation of concerns.
• We are relying on the bundled approach here.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties of morphisms

• This yields structured proofs:
lemma foo {X Y : Scheme} (f : X ⟶ Y) : P f := by
wlog hY : ∃ R, Y = Spec R
· rw [LocalAtTarget.iff_of_openCover Y.affineCover]

/- ... -/
obtain ⟨R, rfl⟩ := hY
wlog hX : ∃ S, X = Spec S
· /- ... -/
obtain ⟨S, rfl⟩ := hX
obtain ⟨φ, rfl⟩ := Spec.map_surjective f
/- ... -/

• Clear separation of concerns.

• We are relying on the bundled approach here.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties of morphisms

• This yields structured proofs:
lemma foo {X Y : Scheme} (f : X ⟶ Y) : P f := by
wlog hY : ∃ R, Y = Spec R
· rw [LocalAtTarget.iff_of_openCover Y.affineCover]

/- ... -/
obtain ⟨R, rfl⟩ := hY
wlog hX : ∃ S, X = Spec S
· /- ... -/
obtain ⟨S, rfl⟩ := hX
obtain ⟨φ, rfl⟩ := Spec.map_surjective f
/- ... -/

• Clear separation of concerns.
• We are relying on the bundled approach here.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

• So far, we only considered properties that happen to satisfy some
locality condition.

• In practice, many definitions are even defined from local
conditions.

Definition
A morphism f : X → Y of schemes is smooth if for every x ∈ X, there
exist affine neighbourhoods x ∈ U and f(x) ∈ V such that f(U) ⊆ V
and the restriction f : U → V is a smooth morphism of affine schemes.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

• So far, we only considered properties that happen to satisfy some
locality condition.

• In practice, many definitions are even defined from local
conditions.

Definition
A morphism f : X → Y of schemes is smooth if for every x ∈ X, there
exist affine neighbourhoods x ∈ U and f(x) ∈ V such that f(U) ⊆ V
and the restriction f : U → V is a smooth morphism of affine schemes.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

• So far, we only considered properties that happen to satisfy some
locality condition.

• In practice, many definitions are even defined from local
conditions.

Definition
A morphism f : X → Y of schemes is smooth if for every x ∈ X, there
exist affine neighbourhoods x ∈ U and f(x) ∈ V such that f(U) ⊆ V
and the restriction f : U → V is a smooth morphism of affine schemes.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

/-- A morphism of schemes is smooth if locally it is a smooth morphism
of affine schemes. -/
def Smooth {X Y : Scheme} (f : X ⟶ Y) : Prop :=
∀ (x : X), ∃ (U : X.affineOpens) (V : Y.affineOpens),

x ∈ U ∧ f '' U ⊆ V ∧ AffineScheme.Smooth (f.restrict U V)

lemma Smooth.comp {X Y Z : Scheme} {f : X ⟶ Y} {g : Y ⟶ Z}
(hf : Smooth f) (hg : Smooth g) :
Smooth (f ≫ g) :=

/- ... -/

• These proofs are tedious and repetitive (we have to do this for
locally of finite type, locally of finite presentation, finite, smooth,
unramified, étale, flat, etc.)

• The textbook proof of this fact is:

Proof.
The assertion is local, so it follows from the fact that the composition
of smooth morphisms of affine schemes is smooth.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

/-- A morphism of schemes is smooth if locally it is a smooth morphism
of affine schemes. -/
def Smooth {X Y : Scheme} (f : X ⟶ Y) : Prop :=
∀ (x : X), ∃ (U : X.affineOpens) (V : Y.affineOpens),

x ∈ U ∧ f '' U ⊆ V ∧ AffineScheme.Smooth (f.restrict U V)
lemma Smooth.comp {X Y Z : Scheme} {f : X ⟶ Y} {g : Y ⟶ Z}

(hf : Smooth f) (hg : Smooth g) :
Smooth (f ≫ g) :=

/- ... -/

• These proofs are tedious and repetitive (we have to do this for
locally of finite type, locally of finite presentation, finite, smooth,
unramified, étale, flat, etc.)

• The textbook proof of this fact is:

Proof.
The assertion is local, so it follows from the fact that the composition
of smooth morphisms of affine schemes is smooth.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

/-- A morphism of schemes is smooth if locally it is a smooth morphism
of affine schemes. -/
def Smooth {X Y : Scheme} (f : X ⟶ Y) : Prop :=
∀ (x : X), ∃ (U : X.affineOpens) (V : Y.affineOpens),

x ∈ U ∧ f '' U ⊆ V ∧ AffineScheme.Smooth (f.restrict U V)
lemma Smooth.comp {X Y Z : Scheme} {f : X ⟶ Y} {g : Y ⟶ Z}

(hf : Smooth f) (hg : Smooth g) :
Smooth (f ≫ g) :=

/- ... -/

• These proofs are tedious and repetitive (we have to do this for
locally of finite type, locally of finite presentation, finite, smooth,
unramified, étale, flat, etc.)

• The textbook proof of this fact is:

Proof.
The assertion is local, so it follows from the fact that the composition
of smooth morphisms of affine schemes is smooth.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

/-- A morphism of schemes is smooth if locally it is a smooth morphism
of affine schemes. -/
def Smooth {X Y : Scheme} (f : X ⟶ Y) : Prop :=
∀ (x : X), ∃ (U : X.affineOpens) (V : Y.affineOpens),

x ∈ U ∧ f '' U ⊆ V ∧ AffineScheme.Smooth (f.restrict U V)
lemma Smooth.comp {X Y Z : Scheme} {f : X ⟶ Y} {g : Y ⟶ Z}

(hf : Smooth f) (hg : Smooth g) :
Smooth (f ≫ g) :=

/- ... -/

• These proofs are tedious and repetitive (we have to do this for
locally of finite type, locally of finite presentation, finite, smooth,
unramified, étale, flat, etc.)

• The textbook proof of this fact is:

Proof.
The assertion is local, so it follows from the fact that the composition
of smooth morphisms of affine schemes is smooth.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

/-- A morphism of schemes is smooth if locally it is a smooth morphism
of affine schemes. -/
def Smooth {X Y : Scheme} (f : X ⟶ Y) : Prop :=
∀ (x : X), ∃ (U : X.affineOpens) (V : Y.affineOpens),

x ∈ U ∧ f '' U ⊆ V ∧ AffineScheme.Smooth (f.restrict U V)
lemma Smooth.comp {X Y Z : Scheme} {f : X ⟶ Y} {g : Y ⟶ Z}

(hf : Smooth f) (hg : Smooth g) :
Smooth (f ≫ g) :=

/- ... -/

• These proofs are tedious and repetitive (we have to do this for
locally of finite type, locally of finite presentation, finite, smooth,
unramified, étale, flat, etc.)

• The textbook proof of this fact is:

Proof.
The assertion is local, so it follows from the fact that the composition
of smooth morphisms of affine schemes is smooth.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

• From a property of morphisms on affine schemes, we obtain a
property of morphisms of schemes:
def induced (P : MorphismProperty AffineScheme) :

MorphismProperty Scheme :=
fun f ↦ ∀ (x : X), ∃ (U : X.affineOpens) (V : Y.affineOpens),

x ∈ U ∧ f '' U ⊆ V ∧ P (f.restrict U V)

• We immediately obtain a definition of smooth:
def Smooth {X Y : Scheme} (f : X ⟶ Y) : Prop :=
induced AffineScheme.Smooth f



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

• From a property of morphisms on affine schemes, we obtain a
property of morphisms of schemes:
def induced (P : MorphismProperty AffineScheme) :

MorphismProperty Scheme :=
fun f ↦ ∀ (x : X), ∃ (U : X.affineOpens) (V : Y.affineOpens),

x ∈ U ∧ f '' U ⊆ V ∧ P (f.restrict U V)
• We immediately obtain a definition of smooth:

def Smooth {X Y : Scheme} (f : X ⟶ Y) : Prop :=
induced AffineScheme.Smooth f



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

• We can now define meta properties:
def MorphismProperty.StableUnderComposition

(P : MorphismProperty C) : Prop :=
∀ {X Y Z : C} {f : X ⟶ Y} {g : Y ⟶ Z}, P f → P g → P (f ≫ g)

• And prove meta theorems:
lemma stableUnderComposition_induced

{P : MorphismProperty AffineScheme}
(h : P.StableUnderComposition) :
(induced P).StableUnderComposition :=
/- ... -/



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Defining new properties

• We can now define meta properties:
def MorphismProperty.StableUnderComposition

(P : MorphismProperty C) : Prop :=
∀ {X Y Z : C} {f : X ⟶ Y} {g : Y ⟶ Z}, P f → P g → P (f ≫ g)

• And prove meta theorems:
lemma stableUnderComposition_induced

{P : MorphismProperty AffineScheme}
(h : P.StableUnderComposition) :
(induced P).StableUnderComposition :=
/- ... -/



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Are we done?

No, because:
• Reductions still contain a lot of boilerplate code.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

lemma isClosedMap_iff_specializingMap (f : X ⟶ Y) [QuasiCompact f] :
IsClosedMap f.base ↔ SpecializingMap f.base := by

refine ⟨fun h ↦ h.specializingMap, fun H ↦ ?_⟩
wlog hY : ∃ R, Y = Spec R
· change topologically @IsClosedMap f

rw [IsLocalAtTarget.iff_of_openCover Y.affineCover]
intro i
refine this (Y.affineCover.pullbackHom f i) ?_ ⟨_, rfl⟩
exact IsLocalAtTarget.of_isPullback (.of_hasPullback _ _) H

obtain ⟨S, rfl⟩ := hY
intro Z hZ
replace H := hZ.stableUnderSpecialization.image H
wlog hX : ∃ R, X = Spec R
· obtain ⟨R, g, hg⟩ := compactSpace_iff_exists.mp (/- ... -/)

have inst : QuasiCompact (g ≫ f) :=
HasAffineProperty.iff_of_isAffine.mpr (by infer_instance)

have := this _ (g ≫ f) (g.base ⁻¹' Z) (hZ.preimage g.continuous)
/- ... -/
exact this H ⟨_, rfl⟩

obtain ⟨R, rfl⟩ := hX
obtain ⟨φ, rfl⟩ := Spec.homEquiv.symm.surjective f
exact PrimeSpectrum.isClosed_image_of_stableUnderSpecialization

φ.hom Z hZ H



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

lemma isClosedMap_iff_specializingMap (f : X ⟶ Y) [QuasiCompact f] :
IsClosedMap f.base ↔ SpecializingMap f.base := by

refine ⟨fun h ↦ h.specializingMap, fun H ↦ ?_⟩
wlog hY : ∃ R, Y = Spec R
· change topologically @IsClosedMap f

rw [IsLocalAtTarget.iff_of_openCover Y.affineCover]
intro i
refine this (Y.affineCover.pullbackHom f i) ?_ ⟨_, rfl⟩
exact IsLocalAtTarget.of_isPullback (.of_hasPullback _ _) H

obtain ⟨S, rfl⟩ := hY
intro Z hZ
replace H := hZ.stableUnderSpecialization.image H
wlog hX : ∃ R, X = Spec R
· obtain ⟨R, g, hg⟩ := compactSpace_iff_exists.mp (/- ... -/)

have inst : QuasiCompact (g ≫ f) :=
HasAffineProperty.iff_of_isAffine.mpr (by infer_instance)

have := this _ (g ≫ f) (g.base ⁻¹' Z) (hZ.preimage g.continuous)
/- ... -/
exact this H ⟨_, rfl⟩

obtain ⟨R, rfl⟩ := hX
obtain ⟨φ, rfl⟩ := Spec.homEquiv.symm.surjective f
exact PrimeSpectrum.isClosed_image_of_stableUnderSpecialization

φ.hom Z hZ H



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Are we done?

No, because:
• Reductions still contain a lot of boilerplate code.

• For a single morphism, we already have two properties:
class IsLocalAtTarget (P : MorphismProperty Scheme) : Prop where
iff_of_openCover :

∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Y.OpenCover),
P f ↔ ∀ i, P (𝒰.pullbackHom f i)

class IsLocalAtSource (P : MorphismProperty Scheme) : Prop where
iff_of_openCover :

∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : X.OpenCover),
P f ↔ ∀ i, P (𝒰.map i ≫ f)

• What about diagrams with more schemes?



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Are we done?

No, because:
• Reductions still contain a lot of boilerplate code.
• For a single morphism, we already have two properties:

class IsLocalAtTarget (P : MorphismProperty Scheme) : Prop where
iff_of_openCover :

∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Y.OpenCover),
P f ↔ ∀ i, P (𝒰.pullbackHom f i)

class IsLocalAtSource (P : MorphismProperty Scheme) : Prop where
iff_of_openCover :

∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : X.OpenCover),
P f ↔ ∀ i, P (𝒰.map i ≫ f)

• What about diagrams with more schemes?



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Are we done?

No, because:
• Reductions still contain a lot of boilerplate code.
• For a single morphism, we already have two properties:

class IsLocalAtTarget (P : MorphismProperty Scheme) : Prop where
iff_of_openCover :

∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Y.OpenCover),
P f ↔ ∀ i, P (𝒰.pullbackHom f i)

class IsLocalAtSource (P : MorphismProperty Scheme) : Prop where
iff_of_openCover :

∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : X.OpenCover),
P f ↔ ∀ i, P (𝒰.map i ≫ f)

• What about diagrams with more schemes?



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Are we done?

Y

X S

Y

X S

T Y

X S

• Locality of properties of diagrams D : J → Scheme?



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Are we done?

Y

X S

Y

X S

T Y

X S

• Locality of properties of diagrams D : J → Scheme?



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties of diagrams

• Encode a diagram of shape J as a functor D : J → Scheme.

• A localisation data of J at an object j ∈ J is for every U → D(j)
a localised diagram DU : J → Scheme with DU (j) = U .

• Given a localisation data of J at j ∈ J , a property P of diagrams
J → Scheme is local at j, if for every diagram J → Scheme and
open cover (Ui)i of D(j), P holds for D if and only if it holds for
DUi

for all i.
• A metaprogram can construct the diagram I → Scheme from a

given concrete situation and synthesize the localisation data for
I.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties of diagrams

• Encode a diagram of shape J as a functor D : J → Scheme.
• A localisation data of J at an object j ∈ J is for every U → D(j)

a localised diagram DU : J → Scheme with DU (j) = U .

• Given a localisation data of J at j ∈ J , a property P of diagrams
J → Scheme is local at j, if for every diagram J → Scheme and
open cover (Ui)i of D(j), P holds for D if and only if it holds for
DUi

for all i.
• A metaprogram can construct the diagram I → Scheme from a

given concrete situation and synthesize the localisation data for
I.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties of diagrams

• Encode a diagram of shape J as a functor D : J → Scheme.
• A localisation data of J at an object j ∈ J is for every U → D(j)

a localised diagram DU : J → Scheme with DU (j) = U .
• Given a localisation data of J at j ∈ J , a property P of diagrams

J → Scheme is local at j, if for every diagram J → Scheme and
open cover (Ui)i of D(j), P holds for D if and only if it holds for
DUi

for all i.

• A metaprogram can construct the diagram I → Scheme from a
given concrete situation and synthesize the localisation data for
I.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Local properties of diagrams

• Encode a diagram of shape J as a functor D : J → Scheme.
• A localisation data of J at an object j ∈ J is for every U → D(j)

a localised diagram DU : J → Scheme with DU (j) = U .
• Given a localisation data of J at j ∈ J , a property P of diagrams

J → Scheme is local at j, if for every diagram J → Scheme and
open cover (Ui)i of D(j), P holds for D if and only if it holds for
DUi

for all i.
• A metaprogram can construct the diagram I → Scheme from a

given concrete situation and synthesize the localisation data for
I.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Ongoing and future work

• Generalise LocalAtTarget etc., to other topologies beyond the
Zariski topology (ongoing).

• Develop algebraic cycles and divisors (ongoing).
• Čech cohomology (ongoing).
• Toric varieties and group schemes (ongoing).
• Quasi-coherent sheafs.
• Connect elliptic curves to schemes.
• (Elementary version of) Zariski-Main theorem.
• Cohomology of quasi-coherent sheafs.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Ongoing and future work

• Generalise LocalAtTarget etc., to other topologies beyond the
Zariski topology (ongoing).

• Develop algebraic cycles and divisors (ongoing).

• Čech cohomology (ongoing).
• Toric varieties and group schemes (ongoing).
• Quasi-coherent sheafs.
• Connect elliptic curves to schemes.
• (Elementary version of) Zariski-Main theorem.
• Cohomology of quasi-coherent sheafs.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Ongoing and future work

• Generalise LocalAtTarget etc., to other topologies beyond the
Zariski topology (ongoing).

• Develop algebraic cycles and divisors (ongoing).
• Čech cohomology (ongoing).

• Toric varieties and group schemes (ongoing).
• Quasi-coherent sheafs.
• Connect elliptic curves to schemes.
• (Elementary version of) Zariski-Main theorem.
• Cohomology of quasi-coherent sheafs.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Ongoing and future work

• Generalise LocalAtTarget etc., to other topologies beyond the
Zariski topology (ongoing).

• Develop algebraic cycles and divisors (ongoing).
• Čech cohomology (ongoing).
• Toric varieties and group schemes (ongoing).

• Quasi-coherent sheafs.
• Connect elliptic curves to schemes.
• (Elementary version of) Zariski-Main theorem.
• Cohomology of quasi-coherent sheafs.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Ongoing and future work

• Generalise LocalAtTarget etc., to other topologies beyond the
Zariski topology (ongoing).

• Develop algebraic cycles and divisors (ongoing).
• Čech cohomology (ongoing).
• Toric varieties and group schemes (ongoing).
• Quasi-coherent sheafs.

• Connect elliptic curves to schemes.
• (Elementary version of) Zariski-Main theorem.
• Cohomology of quasi-coherent sheafs.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Ongoing and future work

• Generalise LocalAtTarget etc., to other topologies beyond the
Zariski topology (ongoing).

• Develop algebraic cycles and divisors (ongoing).
• Čech cohomology (ongoing).
• Toric varieties and group schemes (ongoing).
• Quasi-coherent sheafs.
• Connect elliptic curves to schemes.

• (Elementary version of) Zariski-Main theorem.
• Cohomology of quasi-coherent sheafs.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Ongoing and future work

• Generalise LocalAtTarget etc., to other topologies beyond the
Zariski topology (ongoing).

• Develop algebraic cycles and divisors (ongoing).
• Čech cohomology (ongoing).
• Toric varieties and group schemes (ongoing).
• Quasi-coherent sheafs.
• Connect elliptic curves to schemes.
• (Elementary version of) Zariski-Main theorem.

• Cohomology of quasi-coherent sheafs.



A bit of history Library overview Definition of schemes Reduction to affine schemes Future work

Ongoing and future work

• Generalise LocalAtTarget etc., to other topologies beyond the
Zariski topology (ongoing).

• Develop algebraic cycles and divisors (ongoing).
• Čech cohomology (ongoing).
• Toric varieties and group schemes (ongoing).
• Quasi-coherent sheafs.
• Connect elliptic curves to schemes.
• (Elementary version of) Zariski-Main theorem.
• Cohomology of quasi-coherent sheafs.


	A bit of history
	Library overview
	Definition of schemes
	Reduction to affine schemes
	Future work

