
Nicolas Tabareau
Inria & LS2N

MetaRocq:
Metaprogramming and

Mechanization of Rocq in Rocq

Théo Winterhalter
Inria & LS2N

EuroProofNET WG 3 Meeting
September 16th 2025

Matthieu Sozeau
Inria & LS2N, University of Nantes

Yannick Forster
Inria

Simon Boulier
University of Nantes

joint work with

Jakob Botsch Nielsen
University of Copenhagen

Danil Annenkov
University of Copenhagen

Abhishek Anand
Bedrock Systems, Inc

Cyril Cohen
Inria

Meven Lennon-Bertrand
University of Nantes

Gregory Malecha
Bedrock Systems, Inc

Andrew Appel
Princeton University

Joomy Korkut
Princeton University

Zoe Paraskevopoulou
University of Athens

Jason Gross
MIRI

The MetaRocq Team

Disclaimers

=
An experience report on a meta-mathematical /meta-
theoretical library

Setting

Rocq

CompCert DeepSpec 4-colour theorem MetaRocq

Verified C Compiler
(Executable)

Verified Web Server
(Executable) Verified Colouring Program

Verified Rocq to C / WASM Compiler

CertiCoq

Verified Rocq Type-checker

TYPE /
PROOF CHECKER EXTRACTION

Rocq-malfunction

Verified Rocq to Lambda/OCaml
 Compiler

What do you trust?

Implemented Rocq

A Dependent Type Checker for PCUIC
(18kLoC, 35+ years)

- (Co-)Inductive Families w/ Guard Checking

- Universe Cumulativity and Polymorphism

- ML-style Module System

- KAM, VM and Native Conversion Checkers

- Extraction if you extract your programs

+ OCaml’s Compiler and Runtime

Trusted Core

The Reality

Ideal Rocq Implemented Rocq

Ill-s
pecified

Buggy

Reality Check

Ideal Rocq

Ill-s
pecified

- Reference Manual is semi-formal and partial

- “One feature = n papers/PhDs” where `n : fin 5`
e.g. modules, universes, eta-conversion, guard
condition, SProp….

- “Discrepancies” with the OCaml implementation

- Combination of features not worked-out in detail.
E.g. cumulative inductive types + let-bindings in
parameters of inductives???

Reality Check

Implemented Rocq

Trusted Core

~ 1 critical bug every year

In the news last
week…

The situation today

Ideal Rocq Implemented Rocq

Trusted Core

<>

Our Goal: Improving Trust

Ideal Rocq Implemented Rocq

Trusted Theory

=

Rocq in MetaRocq

MetaRocq
Formalization of

Rocq in Rocq

in in

Verified Rocq

Implemented Rocq

in

Rocq’s Calculus PCUIC

Trusted Theory

Verified metatheory,
correct implementations

Together with Verified Extraction

MetaRocq

in in

Verified Rocq

Verified Ɛ

Verified Core

Implemented Rocq
=

Ideal Rocq

MetaRocq Check infer.

MetaRocq Compile infer.

POPL’20, JACM’25

PLDI’24

Outline

I. A tour of MetaRocq: metaprogramming, meta-theory and
verified implementation of Rocq in Rocq

II. Formalization challenges

Contents of MetaRocq
‣ Template-Rocq: metaprogramming in Rocq (20kLoC)

‣ PCUIC: meta-theory of Rocq in Rocq (150kLoC)

‣ A Verified Rocq type-checker (20kLoC)

‣ A Verified Rocq type-and-proof erasure procedure (45kLoC)

‣ Quotation: formalization of Löb’s theorem (6kLoC)

‣ A verified extraction to OCaml (20kLoC)

‣ Total (w/ utils) 250kLoC —- Extracted OCaml ~ 100kLoC

A bit of history
‣ Template-Coq (Malecha, 2014): a bare-bones library for

reflection of Coq terms into Coq itself: i.e. the AST of Coq (~
Expr in Lean) and minimal meta-programming support.

‣ Used in the CertiCoq project (2015): verified compiler from
Coq to C, using a trusted, unverified erasure procedure to λ-
calculus, extended meta-programming support

‣ 2016-2022: MetaRocq: meta-theory, checkers and erasure

‣ 2020-2024: Verified erasure and extraction to OCaml

MetaRocq in Practice
A meta-programming library

DEMO!

https://metarocq.github.io/tour/touring_metarocq.html

Rocq’s Type Theory: PCUIC
The (Predicative) Polymorphic Cumulative Calculus of

(Co-)Inductive Constructions

What we represent…

fix vrev {A : Type@{i}} {n m : nat} (v : vec@{i} A n) (acc : vec@{i} A m) :=
 match v in vec _ n return vec@{i} A (n + m) with
 | vnil ⇒ acc
 | vcons a n v’ ⇒
 let idx := S n + m in
 coerce (vec A) idx (e : n + S m = idx) (vrev v’ (vcons a m acc))
 end.

vrev_term : term :=
tFix [{|
 dname := nNamed "vrev" ;
 dtype := tProd (nNamed « A") (tSort (Universe.make'' (Level.Level "Top.160", false) []))
 (tProd (nNamed "n") (tInd {| inductive_mind := "Rocq.Init.Datatypes.nat";
 inductive_ind := 0 |} [])

 (tProd (nNamed "m") (tInd {| ...

What we represent…

fix vrev {A : Type@{i}} {n m : nat} (v : vec@{i} A n) (acc : vec@{i} A m) :=
 match v in vec _ n return vec@{i} A (n + m) with
 | vnil ⇒ acc
 | vcons a n v’ ⇒
 let idx := S n + m in
 coerce (vec A) idx (e : n + S m = idx) (vrev v’ (vcons a m acc))
 end.

Specification
Example: Reduction

Γ ⊢ x → t

(x : T := t) ∈ Γ

DEFINITIONS IN
CONTEXTS

Γ ⊢ let x : T := t in b → let x : T := t in b’

Γ, x : T := t ⊢ b → b’

Γ ⊢ let x : T := t in b → b’[x := t]

GENERAL
SUBSTITUTION

STRONG REDUCTION

Meta-Theory
Structures

term, t, u ::=
| Rel (n : nat) | Sort (u : universe) | App (f a : term) …

global_env, Σ ::= []
 | Σ , (kername × InductiveDecl idecl)
 | Σ , (kername × ConstantDecl cdecl)

global_env_ext ::= (global_env × universes_decl)

Γ ::= []
 | Γ , aname : term
 | Γ , aname := t : u

(global environment)

(global environment
 with universes)

(local environment)

Meta-Theory
Judgments

 Σ ; Γ ⊢ t → u, t →* u

 Σ ; Γ ⊢ t =α u, t ≤α u

 Σ ; Γ ⊢ T = U, T ≤ U

 Σ ; Γ ⊢ t : T

 wf Σ, wf_local Σ Γ

One-step reduction and its reflexive
transitive closure (and many other
variants)
α-equivalence + equality or
cumulativity of universes

Untyped conversion and cumulativity
⟺ T →* T’ ∧ U →* U’ ∧ T’ ≤α U’

Typing

Well-formed global and
local environments

Basic Meta-Theory
Structural Properties

- Traditional de Bruijn lifting and substitution operations as in Rocq

- Show that σ-calculus operations simulate them (à la Autosubst) :
 ren : (nat -> nat) -> term -> term
 inst : (nat -> term) -> term -> term

- Still useful to keep both definitions

- Weakening and Substitution from renaming and instantiation theorems

- Easy to lift to strengthening/exchange lemmas

Universes

universe ::= Prop | SProp
 | Type (ne_sorted_list (universe_level * nat)).

Typing Σ ; Γ ⊢ tSort u : tSort (Universe.super u)
No distinction of algebraic universes: more uniform than current Rocq,
similar to Agda

universe_constraint ::=
 universe_level × ℤ × universe_level. (u + x ≤ v)

Specification Global set of consistent constraints, satisfy a valuation in ℕ.

Universes
Basic Meta-Theory

Global environment weakening
 Monotonicity of typing under context extension: universe consistency is
monotone.

Universe instantiation
 Easy, de Bruijn level encoding of universe variables (no capture)

Checking and satisfiability implementations
 Longest simple paths in the graph generated by the constraints φ, with
source lSet

 ∀ l, lsp φ l l = 0 ⟺ satisfiable φ (λ l, lsp lSet l)

Meta-Theory
The path to subject reduction

 Σ ; Γ ⊢ t : T
 ————————————————————
 Σ ; Γ ⊢ T : tSort s

 Σ ; Γ ⊢ t : T Σ ⊢ Δ ≤ Γ
 ———————————————————————————
 Σ ; Δ ⊢ t : T

 Σ ; Γ ⊢ t : T Σ ; Γ ⊢ t → u
 ———————————————————————————————
 Σ ; Γ ⊢ u : T

Validity

Context
Conversion

Subject
Reduction

Requires transitivity of
conversion/cumulativity

More generally, context
cumulativity (contravariant)

Relies on injectivity of
type constructors, a
consequence of
confluence

Confluence

 Σ , Γ ⊢ t ⇛ u One-step parallel reduction

À la Tait-Martin-Löf/Takahashi:

 _ → _

⊂ _ ⇛ _
⊂ _ →* _

“Squash” lemmaDiamond for ⇛
t

∃ t’

uv

The traditional way

Confluence
For a theory with definitions in contexts

 Σ ⊢ Γ, t ⇛ Δ, u One-step parallel reduction,
including reduction in contexts.

Σ ⊢ Γ, x := t ⇛ Δ, x := t’

Σ ⊢ Γ, (let x := t in b) ⇛ Δ, (let x := t’ in b’)

Σ ⊢ (Γ, x := t), b ⇛ (Δ, x := t’), b’

Γ,t

ρctx Γ, ρ (ρctx Γ) t

Γ’, uρ : context -> term -> term
ρctx : context -> context Γ’’, v

Trusted Theory Base

‣ Typing, reduction and cumulativity: ~ 1kLoC (verified and testable)

‣ Oracles for guard conditions
check_fix : global_env → context → fixpoint → bool
+ preservation by renaming/instantiation/equality/reduction

‣ WIP Rocq implementation of the guard/productivity checkers, and
justification of it (Lamiaux, Forster, Sozeau, Tabareau)

Assumptions

Verifying a Type-Checker

Conversion
Objective

u : A (u ≡ v) + (u ≢ v)

Input Output

v : B

Conversion
Objective

u : A

Input Output

v : B

isconv :
 ∀ Σ Γ (u v A B : term),
 (Σ ; Γ ⊢ u : A) ->
 (Σ ; Γ ⊢ v : B) ->
 (Σ ; Γ ⊢ u ≡ v) +
 (Σ ; Γ ⊢ u ≡ v -> ⊥)

(u ≡ v) + (u ≢ v)

Conversion
Algorithm

u : A v : Bu’ v’
whnf whnf

Conversion
Algorithm

u : A v : B

u’ v’≡
?

whnf whnf

Conversion
Algorithm

u : A v : B

u’ v’≡
?

match with,

λ(x:A₁). t₁ λ(x:A₂). t₂, ⇒ A₁ A₂≡
?

∧ t₁ t₂≡
?

Π(x:A₁). B₁ Π(x:A₂). B₂, ⇒ A₁ A₂≡
?

∧ B₁ B₂≡
?

whnf whnf

Conversion
Completeness

u : A v : B

u’ v’
match with,

λ(x:A₁). t₁ λ(x:A₂). t₂, ⇒ A₁ A₂≡
?

∧ t₁ t₂≡
?

Π(x:A₁). B₁ Π(x:A₂). B₂, ⇒ A₁ A₂≡
?

∧ B₁ B₂≡
?

whnf whnf

Π(x:A₁). B₁ Π(x:A₂). B₂, ⇒ A₁ A₂≡
?

∧ B₁ B₂≡
?

Conversion
Completeness

Π(x:A₁). B₁ Π(x:A₂). B₂ ⇒ A₁ A₂≢≡
?

Conversion
Completeness

Π(x:A₁). B₁ Π(x:A₂). B₂ ⇒ A₁ A₂≢≡
?

we conclude

Π(x:A₁). B₁ Π(x:A₂). B₂≢

using inversion lemmata and confluence

Weak head reduction
Termination

Dependent lexicographic order of -> and an order on positions

u π₁ v π₂

⟨ u π₁ , stack_pos u π₁ ⟩ > ⟨ v π₂ , stack_pos v π₂ ⟩

pos (u π₁) pos (v π₂)

Formalisation and meta-theory of type theoryThéo Winterhalter

Type Checking

Weak head reduction

Inference

Cumulativity

Check t : A

Infer t : B Check B ≤ A

Type Checking

Weak head reduction

Inference

Cumulativity Check t : A

Infer t : B Check B ≤ A

MetaRocq Check foo.

Bidirectional Derivations
‣ General technique to show decidability of an inductively-defined

relation/judgement

‣ Specify inputs and outputs of a relation:

 Σ ; Γ ⊢ t : T

 splits into mutually defined:

Inference
 Σ ; Γ ⊢ t > T
 (Σ, Γ, t well-formed inputs, T output)

and checking
 Σ ; Γ ⊢ t < T (Σ, Γ, t, T well-formed inputs)

Bidirectional Type-Checking for the Win!
‣ Bidirectional derivations are syntax directed

‣ Trivialises correctness and completeness of type inference

‣ Principality follows from correctness and completeness of
bidirectional typing w.r.t. “undirected” typing.
(some duplication of substitution / weakening etc… lemmas here)

‣ Completeness requires injectivity of type constructors

‣ Correctness requires transitivity of conversion

‣ Strengthening follows directly

Bidirectional typing for the Calculus of Inductive ConstructionsMeven Lennon-Bertrand

Trusted Theory Base

‣ Strong Normalization
Not provable thanks to Gödel’s second incompleteness theorem.

‣ Consistency and canonicity follow easily.
‣ Used exclusively for termination of the conversion test

See Martin-Löf à la Coq (Adjedj et al, CPP’24) and "What Does It Take to
Certify a Conversion Checker?” (Lennon-Bertrand, FSCD'25) for the state of
the art!

Assumptions
 Axiom normalisation :
 ∀ Σ Γ t, wf_global Σ -> wf_local Σ Γ ->
 welltyped Σ Γ t → Acc (cored Σ Γ) t.

Verifying Erasure

Erasure
At the core of the extraction mechanism:

 Ɛ : term → Λ☐,match,fix,cofix

Erases non-computational content:

- Type erasure:

 Ɛ (t : Type) = ☐

- Proof erasure:

 Ɛ (p : P : Prop) = ☐

fix vrev {A : Type@{i}} {n m : nat} (v : vec A n)
(acc : vec A m) :=
 match v in vec _ n return vec A (n + m) with
 | vnil ⇒ acc
 | vcons a n v’ ⇒
 let idx := S n + m in
 coerce (vec A) idx (e : n + S m = idx)
 (vrev v’ (vcons a m acc))
 end.

fix vrev n m v acc :=
 match v with
 | vnil ⇒ acc
 | vcons a n v’ ⇒
 let idx := S n + m in
 coerce ☐ idx ☐ (vrev v’ (vcons a m acc))
 end.

Ɛ (vrev) =

fix vrev n m v acc :=
 match v with
 | vnil ⇒ acc
 | vcons a n v’ ⇒
 let idx := S n + m in
 coerce ☐ idx ☐ (vrev v’ (vcons a m acc))
 end.

Definition coerce {A} {B : A -> Type) {x} (y : A)
(e : x = y) : P x -> P y :=
 match e with
 | eq_refl ⇒ fun p ⇒ p
 end.

Singleton elimination principle

Erasure

Erase propositional content used in computational content:

Ɛ (match p in eq _ y with eq_refl ⇒ b end) = Ɛ (b)

Erasure

fix vrev n m v acc :=
 match v with
 | vnil ⇒ acc
 | vcons a n v’ ⇒ vrev v’ (vcons a m acc)
 end.

coerce x y := (fun p ⇒ p)

Ɛ (vrev) ~

Ɛ (coerce) ~

Singleton elimination principle

Erase propositional content used in computational content:

Ɛ (match p in eq _ y with eq_refl ⇒ b end) = Ɛ (b)

Erasure Correctness

t →cbv v

t’ →cbv ∃v’

Ɛ Observational
Equivalence

 ⊢ t : nat
=> ⊢ t → n /\ n irreducible (strong normalization)
=> ⊢ t → n : nat /\ n ∈ ℕ (subject reduction and canonicity)
=> ⊢ t →cbv n /\ n ∈ ℕ (standardisation)
=> Ɛ (t) →cbv Ɛ (n) = n (erasure correctness +

 extracted naturals are equivalent to naturals)

Erasure Correctness
First define a non-deterministic erasure relation, then define:
 Ɛ : ∀ Σ Γ t (wt : welltyped Σ Γ t) → EAst.term

Finally show that Ɛ’s graph is in the erasure relation. A few additional
optimizations:

‣ Remove trivial cases on singleton inductive types in Prop

‣ Compute the dependencies of the erased term to erase only the
computationally relevant subset of the global environment. I.e.
remove unnecessary proofs the original term depended on.

‣ Inline projections, constructors as blocks (fully applied), unguarded
fixpoint reduction

Verifying Extraction to OCaml

Malfunction & Rocq-malfunction
‣ AST of untyped OCaml terms (including refs, …)

Using HOAS, tricky mutual fix point representation

‣ Compiler from malfunction to cmxs (ocaml object files), provided a
trusted .mli interface is given.

‣ A reference interpreter ported to Rocq using a named variables
variant of Λ☐

‣ We derive a big-step operational semantics (with a heap and
environment), producing malfunction values (closures, blocks for
constructors, or primitive ints/floats), agreeing with the interpreter

Compiler Correctness
t →cbv v (in Λ☐,match,fix,cofix)

t’ →cbv ∃v’ (in OCaml/malfunction)

Rocq-malfunction
Observational
Equivalence

With Canonicity and SN:
 ⊢ t : nat
=> ⊢ t → n : nat (n ∈ ℕ)
=> t →cbv n : nat
=> Rocq-malfunction (t) →cbv n

Separate compilation
⊢ t : nat -> nat ⊢ u : nat
———
Mapply (Rocq-malfunction t) (Rocq-malfunction u) →cbv n

t u →cbv n

‣ Uses a step-indexed realisability semantics for the subset of ocaml
types we consider (first-order datatypes)

‣ Requires to show that functions compiled from Rocq are pure (don’t
touch the heap).

Verified Extraction Pipeline

Summary

MetaRocq

in
in

Verified Rocq

Ideal Rocq

Implemented Rocq

Trusted Core

in

Summary

MetaRocq

in in

Verified Rocq

Verified Ɛ + Verified Extraction

Verified Core

Implemented Rocq
=

Ideal Rocq

MetaRocq Check infer.

MetaRocq Compile infer.

In the works
‣ Integration of Sort Polymorphism and Elimination

Constraints (J. Rosain)

‣ Integration of an efficient verified algorithm for universe
checking (M. Sozeau)

‣ Meta-Theory of eta-conversion, definitional proof-
irrelevance, rewrite rules, typed equality, … (Y. Leray, …)

‣ Induction principles for nested types (T. Lamiaux, …)

Future directions

‣ Adding explicit existential variables for programming
tactics / elaborations. ~ Lean’s MetaM functionality.

‣ Extending the support for (verified) Meta-Programming (M.
Bouverot-Dupuis, Y. Forster).

Part II
Formalization Challenges

On-demand separation of computational
content

‣ Explicit `squash : Type -> Prop` (noted ∥ T ∥) instead of everything in
Prop by default.

‣ Allows well-founded induction on derivations (or their size)

‣ Explicits the non-computational/computational distinction in
statements, e.g. conversion:

 conv : forall Γ T U, ∥ isType Γ T ∥ -> ∥ isType Γ U ∥ ->
 ∥ Γ ⊢ T = U ∥ + ∥ ~ Γ ⊢ T = U ∥

‣ After erasure, a boolean is returned and no typing derivations are
taken.

Essential use of dependent elimination

“Green slime” in hypotheses is common !

Essential use of (dependent) views

Feasibility of formalization
t →cbv v (in Λ☐,match,fix,cofix)

t’ →cbv ∃v’ (in OCaml/malfunction)

Rocq-malfunction
Observational
Equivalence

‣ ~ 10 compiler passes to formalize

‣ Slight variants of the AST are used

‣ For feasibility => configurable AST and well-formedness

‣ Custom induction principle building in well-formedness

Configurable ASTs and relations
‣ For lamba-box: only one AST definition and evaluation relation

‣ Well-formedness and evaluation are configured by a set of flags
activating or deactivating specific constructors or rules.

‣ Advantage: generic lemmas for all possible combinations, makes
apparent the pre/post-conditions of each phase.

 Avoid duplication!

 E.g. when transforming constructor applications to blocks, we
disallow generic application to have a constructor at the head, disable
the application congruence rule and enable a specific constructor
congruence rule.

Custom Induction Principles
‣ Idea: combine an inductive property on terms with the induction

principle for terms themselves.

‣ Equivalent to working with a subset type {x : term | P x} without the
currying/uncurrying administrative overhead.

‣ Does the boilerplate invariant passing once and for all.

‣ Example: evaluation of well formed terms, without having to invoke
preservation of wellformedness at each step (in 10 proofs)

‣ Related to Ornaments (McBride et al)

Nested inductives for reuse
‣ Many specifications and proofs rely on lists of data being

synchronized, making essential use of nested inductive types.

 All2 (fun b bty => |- b : bty) branches branches_types

‣ Large reusable library around the use of All / All2 / Alli / All_fold
predicates on multiple lists, and their dependent versions, e.g:

‣ Different from `In` or big operator algebra (AFAICT)

Nested inductives are crucial
but badly supported

‣ Derivation of nested elimination principles is manual in Rocq, only a
restrictive subset of nesting is supported by Lean. Well supported by
BNFs in Isabelle

‣ News We have a generic methodology applicable to both Rocq and
Lean to generate user-friendly eliminators based on “sparse”
parametricity (T. Lamiaux, Y. Forster, M. Sozeau, N. Tabareau).
Defined in MetaRocq, WIP plugin for Rocq

Some lessons learned

‣ Avoiding duplication and smart proof engineering is essential for
feasibility of these proofs. E.g. establishing powerful elimination
principles.

‣ Modularity and genericity are key to avoid duplication, e.g. through
the use of nested inductive types and polymorphic predicates

Related Work

‣ Coq in Coq (Barras) - normalization, idealized calculus

‣ MLTT in Agda formalisations (Abel et al) - focus on normalization/
consistency, NbE algorithm, erasure

‣ Martin Löf à la Coq (Adjedj et al) - variant of Abel et al.

‣ Lean4Lean (Carneiro)

‣ CakeML / Candle (Myreen et al)

Going further

MetaRocq

‣ See metarocq.github.io for documentation, papers and
examples

‣ Part of the Rocq Platform

Verified

http://metacoq.github.io

