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Disclaimers

=
An experience report on a meta-mathematical /meta-
theoretical library



Setting

Rocq

CompCert DeepSpec 4-colour theorem MetaRocq

Verified C Compiler 
(Executable)

Verified Web Server 
(Executable) Verified Colouring Program

Verified Rocq to C / WASM Compiler

CertiCoq

Verified Rocq Type-checker

TYPE / 
PROOF CHECKER EXTRACTION

Rocq-malfunction

Verified Rocq to Lambda/OCaml 
 Compiler



What do you trust?

Implemented Rocq

A Dependent Type Checker for PCUIC 
(18kLoC, 35+ years) 

- (Co-)Inductive Families w/ Guard Checking 

- Universe Cumulativity and Polymorphism 

- ML-style Module System 

- KAM, VM and Native Conversion Checkers 

- Extraction if you extract your programs 

+ OCaml’s Compiler and Runtime 

Trusted Core



The Reality

Ideal Rocq Implemented Rocq

Ill-s
pecified

Buggy



Reality Check

Ideal Rocq

Ill-s
pecified

- Reference Manual is semi-formal and partial 

- “One feature = n papers/PhDs” where `n : fin 5` 
e.g. modules, universes, eta-conversion, guard 
condition, SProp…. 

- “Discrepancies” with the OCaml implementation 

- Combination of features not worked-out in detail.  
E.g. cumulative inductive types + let-bindings in 
parameters of inductives???



Reality Check

Implemented Rocq

Trusted Core

~ 1 critical bug every year

In the news last 
week…



The situation today

Ideal Rocq Implemented Rocq

Trusted Core

<>



Our Goal: Improving Trust

Ideal Rocq Implemented Rocq

Trusted Theory

=



Rocq in MetaRocq

MetaRocq 
Formalization of  

Rocq in Rocq

in in

Verified Rocq

Implemented Rocq

in

Rocq’s Calculus PCUIC

Trusted Theory

Verified metatheory, 
correct implementations



Together with Verified Extraction

MetaRocq

in in

Verified Rocq

Verified Ɛ

Verified Core

Implemented Rocq 
= 

Ideal Rocq

MetaRocq Check infer.

MetaRocq Compile infer.

POPL’20, JACM’25

PLDI’24



Outline

I. A tour of MetaRocq: metaprogramming, meta-theory and 
verified implementation of Rocq in Rocq 

II. Formalization challenges



Contents of MetaRocq
‣ Template-Rocq: metaprogramming in Rocq (20kLoC) 

‣ PCUIC: meta-theory of Rocq in Rocq (150kLoC) 

‣ A Verified Rocq type-checker (20kLoC) 

‣ A Verified Rocq type-and-proof erasure procedure (45kLoC) 

‣ Quotation:  formalization of Löb’s theorem (6kLoC) 

‣ A verified extraction to OCaml (20kLoC) 

‣ Total (w/ utils) 250kLoC  —-  Extracted OCaml ~ 100kLoC



A bit of history
‣ Template-Coq (Malecha, 2014): a bare-bones library for 

reflection of Coq terms into Coq itself: i.e. the AST of Coq (~ 
Expr in Lean) and minimal meta-programming support. 

‣ Used in the CertiCoq project (2015): verified compiler from 
Coq to C, using a trusted, unverified erasure procedure to λ-
calculus, extended meta-programming support 

‣ 2016-2022: MetaRocq: meta-theory, checkers and erasure 

‣ 2020-2024: Verified erasure and extraction to OCaml 



MetaRocq in Practice 
A meta-programming library

DEMO!

https://metarocq.github.io/tour/touring_metarocq.html


Rocq’s Type Theory: PCUIC 
The (Predicative) Polymorphic Cumulative Calculus of 

(Co-)Inductive Constructions



What we represent…

fix vrev {A : Type@{i}} {n m : nat} (v : vec@{i} A n) (acc : vec@{i} A m) := 
  match v in vec _ n return vec@{i} A (n + m) with 
  | vnil         ⇒ acc 
  | vcons a n v’ ⇒ 
      let idx := S n + m in 
      coerce (vec A) idx (e : n + S m = idx) (vrev v’ (vcons a m acc)) 
  end.

vrev_term : term := 
tFix [{| 
  dname := nNamed "vrev" ; 
  dtype := tProd (nNamed « A") (tSort (Universe.make'' (Level.Level "Top.160", false) [])) 
    (tProd (nNamed "n") (tInd {| inductive_mind := "Rocq.Init.Datatypes.nat";  
    inductive_ind := 0 |} []) 

    (tProd (nNamed "m") (tInd {| ...



What we represent…

fix vrev {A : Type@{i}} {n m : nat} (v : vec@{i} A n) (acc : vec@{i} A m) := 
  match v in vec _ n return vec@{i} A (n + m) with 
  | vnil         ⇒ acc 
  | vcons a n v’ ⇒ 
      let idx := S n + m in 
      coerce (vec A) idx (e : n + S m = idx) (vrev v’ (vcons a m acc)) 
  end.



Specification
Example: Reduction

Γ ⊢ x → t

(x : T := t) ∈ Γ

DEFINITIONS IN  
CONTEXTS

Γ ⊢ let x : T := t in b → let x : T := t in b’

Γ, x : T := t ⊢ b → b’

Γ ⊢ let x : T := t in b → b’[x := t]

GENERAL 
SUBSTITUTION

STRONG REDUCTION



Meta-Theory
Structures

term, t, u ::=  
| Rel (n : nat) | Sort (u : universe) | App (f a : term) …  

global_env, Σ ::= []  
 | Σ , (kername × InductiveDecl idecl) 
 | Σ , (kername × ConstantDecl cdecl) 

global_env_ext ::= (global_env × universes_decl) 
 
Γ ::= [] 
  | Γ , aname : term  
  | Γ , aname := t : u

(global environment) 

(global environment  
  with universes) 

(local environment)



Meta-Theory
Judgments

 Σ ; Γ ⊢ t → u, t →* u 

 Σ ; Γ ⊢ t =α u, t ≤α u  

 Σ ; Γ ⊢ T = U, T ≤ U  

 Σ ; Γ ⊢ t : T 

 wf Σ, wf_local Σ Γ 

One-step reduction and its reflexive 
transitive closure (and many other 
variants)
α-equivalence + equality or 
cumulativity of universes

Untyped conversion and cumulativity 
⟺ T →* T’ ∧ U →* U’ ∧ T’ ≤α U’

Typing

Well-formed global and  
local environments



Basic Meta-Theory
Structural Properties

- Traditional de Bruijn lifting and substitution operations as in Rocq 

- Show that σ-calculus operations simulate them (à la Autosubst) :  
  ren : (nat -> nat) -> term -> term 
 inst : (nat -> term) -> term -> term 

- Still useful to keep both definitions 

- Weakening and Substitution from renaming and instantiation theorems 

- Easy to lift to strengthening/exchange lemmas



Universes

universe ::= Prop | SProp  
  | Type (ne_sorted_list (universe_level * nat)).  

Typing      Σ ; Γ ⊢ tSort u : tSort (Universe.super u) 
No distinction of algebraic universes: more uniform than current Rocq, 
similar to Agda 

universe_constraint ::=  
  universe_level × ℤ × universe_level.    (u + x ≤ v) 

Specification   Global set of consistent constraints, satisfy a valuation in ℕ.



Universes
Basic Meta-Theory

Global environment weakening 
   Monotonicity of typing under context extension: universe consistency is 
monotone. 

Universe instantiation 
   Easy, de Bruijn level encoding of universe variables (no capture) 

Checking and satisfiability implementations 
  Longest simple paths in the graph generated by the constraints φ, with 
source lSet 

  ∀ l, lsp φ l l = 0 ⟺ satisfiable φ (λ l, lsp lSet l)



Meta-Theory
The path to subject reduction

    Σ ; Γ ⊢ t : T 
 ———————————————————— 
 Σ ; Γ ⊢ T : tSort s 

 Σ ; Γ ⊢ t : T    Σ ⊢ Δ ≤ Γ 
 ——————————————————————————— 
         Σ ; Δ ⊢ t : T 

 Σ ; Γ ⊢ t : T    Σ ; Γ ⊢ t → u 
 ———————————————————————————————  
        Σ ; Γ ⊢ u : T 

Validity

Context  
Conversion

Subject 
Reduction

Requires transitivity of 
conversion/cumulativity

More generally, context 
cumulativity (contravariant)

Relies on injectivity of 
type constructors, a 
consequence of 
confluence



Confluence

 Σ , Γ ⊢ t ⇛ u One-step parallel reduction

À la Tait-Martin-Löf/Takahashi:

  _ → _  

⊂ _ ⇛ _  
⊂ _ →* _

“Squash” lemmaDiamond for ⇛ 
t

∃ t’

uv

The traditional way



Confluence
For a theory with definitions in contexts

 Σ ⊢ Γ, t ⇛ Δ, u One-step parallel reduction, 
including reduction in contexts.

Σ ⊢ Γ, x := t ⇛ Δ, x := t’

Σ ⊢ Γ, (let x := t in b) ⇛ Δ, (let x := t’ in b’)

Σ ⊢ (Γ, x := t), b ⇛ (Δ, x := t’), b’

Γ,t

ρctx Γ, ρ (ρctx Γ) t

Γ’, uρ : context -> term -> term 
ρctx : context -> context Γ’’, v



Trusted Theory Base

‣ Typing,  reduction and cumulativity: ~ 1kLoC (verified and testable) 

‣ Oracles for guard conditions 
check_fix : global_env → context → fixpoint → bool 
+ preservation by renaming/instantiation/equality/reduction 

‣ WIP Rocq implementation of the guard/productivity checkers, and 
justification of it (Lamiaux, Forster, Sozeau, Tabareau)

Assumptions



Verifying a Type-Checker



Conversion
Objective

u : A (u ≡ v) + (u ≢ v)

Input Output

v : B



Conversion
Objective

u : A

Input Output

v : B

isconv : 
  ∀ Σ Γ (u v A B : term),  
    (Σ ; Γ ⊢ u : A) ->  
    (Σ ; Γ ⊢ v : B) ->  
    (Σ ; Γ ⊢ u ≡ v) + 
    (Σ ; Γ ⊢ u ≡ v -> ⊥)

(u ≡ v) + (u ≢ v)



Conversion
Algorithm

u : A v : Bu’ v’
whnf whnf



Conversion
Algorithm

u : A v : B

u’ v’≡
?

whnf whnf



Conversion
Algorithm

u : A v : B

u’ v’≡
?

match with,

λ(x:A₁). t₁ λ(x:A₂). t₂, ⇒ A₁ A₂≡
?

∧ t₁ t₂≡
?

Π(x:A₁). B₁ Π(x:A₂). B₂, ⇒ A₁ A₂≡
?

∧ B₁ B₂≡
?

whnf whnf



Conversion
Completeness

u : A v : B

u’ v’
match with,

λ(x:A₁). t₁ λ(x:A₂). t₂, ⇒ A₁ A₂≡
?

∧ t₁ t₂≡
?

Π(x:A₁). B₁ Π(x:A₂). B₂, ⇒ A₁ A₂≡
?

∧ B₁ B₂≡
?

whnf whnf

Π(x:A₁). B₁ Π(x:A₂). B₂, ⇒ A₁ A₂≡
?

∧ B₁ B₂≡
?



Conversion
Completeness

Π(x:A₁). B₁ Π(x:A₂). B₂ ⇒ A₁ A₂≢≡
?



Conversion
Completeness

Π(x:A₁). B₁ Π(x:A₂). B₂ ⇒ A₁ A₂≢≡
?

we conclude

Π(x:A₁). B₁ Π(x:A₂). B₂≢

using inversion lemmata and confluence



Weak head reduction
Termination

Dependent lexicographic order of  -> and an order on positions

u π₁ v π₂

⟨ u π₁ , stack_pos u π₁ ⟩ > ⟨ v π₂ , stack_pos v π₂ ⟩

pos (u π₁) pos (v π₂)

Formalisation and meta-theory of type theoryThéo Winterhalter



Type Checking

Weak head reduction

Inference

Cumulativity

Check t : A

Infer t : B Check B ≤ A



Type Checking

Weak head reduction

Inference

Cumulativity Check t : A

Infer t : B Check B ≤ A

MetaRocq Check foo.



Bidirectional Derivations
‣ General technique to show decidability of an inductively-defined 

relation/judgement 

‣ Specify inputs and outputs of a relation: 

    Σ ; Γ ⊢ t : T 
 
    splits into mutually defined: 

Inference 
    Σ ; Γ ⊢ t > T  
   (Σ, Γ, t well-formed inputs, T output) 

and checking 
    Σ ; Γ ⊢ t < T (Σ, Γ, t, T  well-formed inputs) 



Bidirectional Type-Checking for the Win!
‣ Bidirectional derivations are syntax directed 

‣ Trivialises correctness and completeness of type inference 

‣ Principality follows from correctness and completeness of 
bidirectional typing w.r.t. “undirected” typing. 
(some duplication of substitution / weakening etc… lemmas here) 

‣ Completeness requires injectivity of type constructors 

‣ Correctness requires transitivity of conversion 

‣ Strengthening follows directly

Bidirectional typing for the Calculus of Inductive ConstructionsMeven Lennon-Bertrand



Trusted Theory Base

‣ Strong Normalization  
Not provable thanks to Gödel’s second incompleteness theorem. 

‣ Consistency and canonicity follow easily. 
‣ Used exclusively for termination of the conversion test 

See Martin-Löf à la Coq (Adjedj et al, CPP’24) and "What Does It Take to 
Certify a Conversion Checker?” (Lennon-Bertrand, FSCD'25) for the state of 
the art!

Assumptions
  Axiom normalisation :
    ∀ Σ Γ t, wf_global Σ -> wf_local Σ Γ ->
    welltyped Σ Γ t → Acc (cored Σ Γ) t.



Verifying Erasure



Erasure
At the core of the extraction mechanism: 
 
   Ɛ :  term → Λ☐,match,fix,cofix 
 
Erases non-computational content: 

- Type erasure: 
 
   Ɛ (t : Type) = ☐ 

- Proof erasure:  
 
   Ɛ (p : P : Prop) = ☐ 

fix vrev {A : Type@{i}} {n m : nat} (v : vec A n) 
(acc : vec A m) := 
  match v in vec _ n return vec A (n + m) with 
  | vnil         ⇒ acc 
  | vcons a n v’ ⇒ 
      let idx := S n + m in 
      coerce (vec A) idx (e : n + S m = idx)  
        (vrev v’ (vcons a m acc)) 
  end.

fix vrev n m v acc := 
  match v with 
  | vnil         ⇒ acc 
  | vcons a n v’ ⇒ 
      let idx := S n + m in 
      coerce ☐ idx ☐ (vrev v’ (vcons a m acc)) 
  end.

Ɛ (vrev) = 



fix vrev n m v acc := 
  match v with 
  | vnil         ⇒ acc 
  | vcons a n v’ ⇒ 
      let idx := S n + m in 
      coerce ☐ idx ☐ (vrev v’ (vcons a m acc)) 
  end.

Definition coerce {A} {B : A -> Type) {x} (y : A)           
(e : x = y) : P x -> P y := 
  match e with 
  | eq_refl      ⇒ fun p ⇒ p 
  end.

Singleton elimination principle

Erasure

Erase propositional content used in computational content:

Ɛ (match p in eq _ y with eq_refl ⇒ b end) = Ɛ (b)



Erasure

fix vrev n m v acc := 
  match v with 
  | vnil         ⇒ acc 
  | vcons a n v’ ⇒ vrev v’ (vcons a m acc) 
  end.

coerce x y := (fun p ⇒ p)

Ɛ (vrev) ~

Ɛ (coerce) ~

Singleton elimination principle

Erase propositional content used in computational content:

Ɛ (match p in eq _ y with eq_refl ⇒ b end) = Ɛ (b)



Erasure Correctness

t   →cbv  v

t’  →cbv  ∃v’

Ɛ Observational  
Equivalence

   ⊢ t : nat      
=> ⊢ t → n /\ n irreducible (strong normalization) 
=> ⊢ t → n : nat /\ n ∈ ℕ   (subject reduction and canonicity) 
=> ⊢ t →cbv n /\ n ∈ ℕ       (standardisation) 
=> Ɛ (t) →cbv Ɛ (n) = n      (erasure correctness +  

                      extracted naturals are equivalent to naturals) 



Erasure Correctness
First define a non-deterministic erasure relation, then define: 
   Ɛ : ∀ Σ Γ t (wt : welltyped Σ Γ t) → EAst.term 

Finally show that Ɛ’s graph is in the erasure relation. A few additional 
optimizations: 

‣ Remove trivial cases on singleton inductive types in Prop 

‣ Compute the dependencies of the erased term to erase only the 
computationally relevant subset of the global environment. I.e. 
remove unnecessary proofs the original term depended on. 

‣ Inline projections, constructors as blocks (fully applied), unguarded 
fixpoint reduction



Verifying Extraction to OCaml



Malfunction & Rocq-malfunction
‣ AST of untyped OCaml terms (including refs, …) 

Using HOAS, tricky mutual fix point representation 

‣ Compiler from malfunction to cmxs (ocaml object files), provided a 
trusted .mli interface is given.  

‣ A reference interpreter ported to Rocq using a named variables 
variant of Λ☐ 

‣ We derive a big-step operational semantics (with a heap and 
environment), producing malfunction values (closures, blocks for 
constructors, or primitive ints/floats), agreeing with the interpreter 



Compiler Correctness
t   →cbv     v  (in Λ☐,match,fix,cofix)

t’  →cbv      ∃v’ (in OCaml/malfunction)

Rocq-malfunction
Observational  
Equivalence

With Canonicity and SN:
   ⊢ t : nat        
=> ⊢ t → n : nat   (n ∈ ℕ)  
=> t →cbv n : nat  
=> Rocq-malfunction (t) →cbv n 



Separate compilation
⊢ t : nat -> nat     ⊢ u : nat   
————————————————————————————————————————————————————— 
Mapply (Rocq-malfunction t) (Rocq-malfunction u) →cbv n 

t u →cbv  n

‣ Uses a step-indexed realisability semantics for the subset of ocaml 
types we consider (first-order datatypes) 

‣ Requires to show that functions compiled from Rocq are pure (don’t 
touch the heap). 



Verified Extraction Pipeline



Summary

MetaRocq

in
in

Verified Rocq

Ideal Rocq

Implemented Rocq

Trusted Core

in



Summary

MetaRocq

in in

Verified Rocq

Verified Ɛ + Verified Extraction

Verified Core

Implemented Rocq 
= 

Ideal Rocq

MetaRocq Check infer.

MetaRocq Compile infer.



In the works
‣ Integration of Sort Polymorphism and Elimination 

Constraints (J. Rosain) 

‣ Integration of an efficient verified algorithm for universe 
checking (M. Sozeau) 

‣ Meta-Theory of eta-conversion, definitional proof-
irrelevance, rewrite rules, typed equality, … (Y. Leray, …) 

‣ Induction principles for nested types (T. Lamiaux, …)



Future directions

‣ Adding explicit existential variables for programming 
tactics / elaborations.  ~ Lean’s MetaM functionality. 

‣ Extending the support for (verified) Meta-Programming (M. 
Bouverot-Dupuis, Y. Forster).



Part II 
Formalization Challenges



On-demand separation of computational 
content

‣ Explicit `squash : Type -> Prop` (noted ∥ T ∥ ) instead of everything in 
Prop by default. 

‣ Allows well-founded induction on derivations (or their size) 

‣ Explicits the non-computational/computational distinction in 
statements, e.g. conversion: 
 
  conv : forall Γ T U, ∥ isType Γ T ∥ -> ∥ isType Γ U ∥ -> 
           ∥ Γ ⊢ T = U ∥ + ∥ ~ Γ ⊢  T = U ∥ 

‣ After erasure, a boolean is returned and no typing derivations are 
taken.



Essential use of dependent elimination

“Green slime” in hypotheses is common ! 



Essential use of (dependent) views



Feasibility of formalization
t   →cbv     v  (in Λ☐,match,fix,cofix)

t’  →cbv      ∃v’ (in OCaml/malfunction)

Rocq-malfunction
Observational  
Equivalence

‣ ~ 10 compiler passes to formalize 

‣ Slight variants of the AST are used  

‣ For feasibility => configurable AST and well-formedness  

‣ Custom induction principle building in well-formedness 



Configurable ASTs and relations
‣ For lamba-box: only one AST definition and evaluation relation 

‣ Well-formedness and evaluation are configured by a set of flags 
activating or deactivating specific constructors or rules. 

‣ Advantage: generic lemmas for all possible combinations, makes 
apparent the pre/post-conditions of each phase.  
 
                                         Avoid duplication! 

    E.g. when transforming constructor applications to blocks, we 
disallow generic application to have a constructor at the head, disable 
the application congruence rule and enable a specific constructor 
congruence rule.



Custom Induction Principles
‣ Idea: combine an inductive property on terms with the induction 

principle for terms themselves. 

‣ Equivalent to working with a subset type {x : term | P x} without the 
currying/uncurrying administrative overhead. 

‣ Does the boilerplate invariant passing once and for all. 

‣ Example: evaluation of well formed terms, without having to invoke 
preservation of wellformedness at each step (in 10 proofs) 

‣ Related to Ornaments (McBride et al)



Nested inductives for reuse
‣ Many specifications and proofs rely on lists of data being 

synchronized, making essential use of nested inductive types. 
 
          All2 (fun b bty => |- b : bty) branches branches_types 

‣ Large reusable library around the use of All / All2 / Alli / All_fold 
predicates on multiple lists, and their dependent versions, e.g:

 

‣ Different from `In` or big operator algebra (AFAICT)



Nested inductives are crucial 
but badly supported

‣ Derivation of nested elimination principles is manual in Rocq, only a 
restrictive subset of nesting is supported by Lean. Well supported by 
BNFs in Isabelle 

‣ News We have a generic methodology applicable to both Rocq and 
Lean to generate user-friendly eliminators based on “sparse” 
parametricity (T. Lamiaux, Y. Forster, M. Sozeau, N. Tabareau).  
Defined in MetaRocq, WIP plugin for Rocq



Some lessons learned

‣ Avoiding duplication and smart proof engineering is essential for 
feasibility of these proofs. E.g. establishing powerful elimination 
principles. 

‣ Modularity and genericity are key to avoid duplication, e.g. through 
the use of nested inductive types and polymorphic predicates



Related Work

‣ Coq in Coq (Barras) - normalization, idealized calculus 

‣ MLTT in Agda formalisations (Abel et al) - focus on normalization/
consistency, NbE algorithm, erasure 

‣ Martin Löf à la Coq (Adjedj et al)  - variant of Abel et al. 

‣ Lean4Lean (Carneiro) 

‣ CakeML / Candle (Myreen et al)



Going further

MetaRocq

‣ See metarocq.github.io for documentation, papers and 
examples 

‣ Part of the Rocq Platform

Verified

http://metacoq.github.io

