
The Autosubst Library
Kathrin Stark

Heriot-Watt University, Edinburgh, UK
EuroProofNet Workshop WG 4

Sept 15 - 16 2025

Today’s Talk

1. Autosubst – a library for binders
2. Coq à la Carte - Towards a library for modular proofs

Today’s Talk

1. Autosubst – a library for binders
2. Coq à la Carte - Towards a library for modular proofs

How much do you need to know about the formalization of
binders to write proofs about programming languages in a

proof assistant?

Syntax/Variables in a Textbook

Sørenson, Urzyczyn - Lectures on the Curry-Howard Isomorphism

Define preterms…

Syntax/Variables in a Textbook

Sørenson, Urzyczyn - Lectures on the Curry-Howard Isomorphism

… 𝛼-equivalence…

… actual terms …

Syntax/Variables in a Textbook

Sørenson, Urzyczyn - Lectures on the Curry-Howard Isomorphism

… and definitions on
terms.

Which lemmas
do we need?

How to apply
them?

… and that’s without the proofs!

How much do you need to know about the formalization of
binders to write proofs about programming languages in a

proof assistant?

• How to state lemmas in this presentation?
• Which lemmas on substitution should I prove?
• How do I prove them?
• How do I use them?

POPLMark’s Criteria for Success

Autosubst

A choice of
• Binder representation
• Definition of

substitutions
• Set of substitution

lemmas
that requires minimum
input from the user

+
A library format to
automatically generate the
corresponding boilerplate,
including automation
tactic
that requires minimum
input from the user

Schäfer, Tebbi, Smolka – CPP ‘15
S, Schäfer, Kaiser – CPP ‘19

There’s a Variety of Binding Techniques in a
Proof Assistant!

Source: https://www.seas.upenn.edu/pclub/poplmark

Library vs
special-

purpose proof
assistants?

https://www.seas.upenn.edu/pclub/poplmark

21

De Bruijn, Nicolaas Govert. "Lambda calculus
notation with nameless dummies, a tool for
automatic formula manipulation, with application
to the Church-Rosser theorem." 1972

De Bruijn Syntax
Idea: 𝛼-equivalence = definitional
equality
Binders are presented by references
and induce a scope change.
Terms:

Inductive tm: Type :=
| var_tm : nat → tm
| app : tm → tm → tm
| lam : tm → tm.

Example term:
𝜆 𝑥. 𝑧 𝜆 𝑦. 𝑥 𝑦 𝑧 ⇒ 𝜆. 1 𝜆. 1 0 2

lam (app (var_tm 1) (lam
(app (app (var_tm 1) (var_tm
0)) (var_tm 2)))

(Parallel) Substitutions
de Bruijn ‘72

23

Two-Level Approach: Adams, R.: Formalized metatheory with terms represented by an indexed family of
types. Types for Proofs and Programs, ‘06.

Requires again substitution

Substitution without
copy and paste:

Altenkirch, Burke,
Wadler, LFMTP ‘25

Goal: Instantiation with substitution, _ [_] : tm -> (ℕ -> tm) -> tm

Primitives sufficient to define
e.g. beta-reduction

The Sigma Calculus [Abadi et al. ‘96]
A Convergent [Curien et al. ‘96] + Complete [Schäfer et al. ‘15] Rewriting System

25

s = t can be decided via the above rewriting system

Implemented via a
rewriting tactic called
asimpl that normalizes
a term using the rewriting
system

Demo: A Proof of Type Safety

• Use the one from RocqPL

Demo: A Proof of Type Safety

• Use the one from RocqPL

Demo: A Proof of Type Safety

• Use the one from RocqPL

Demo: A Proof of Type Safety

Demo: A Proof of Type Safety

• Use the one from RocqPL

Demo: A Proof of Type Safety

• Use the one from RocqPL

Autosubst

A choice of
• Binder representation
• Definition of

substitutions
• Set of substitution

lemmas
that requires minimum
input from the user

One Main Culprit: Compositionality of
Instantiation

Autosubst

A choice of
• Binder representation
• Definition of

substitutions
• Set of substitution

lemmas
that requires minimum
input from the user

+

A library format to
automatically generate the
corresponding boilerplate,
including automation
tactic
to require minimum input
from the user

Different solutions:
Special-purpose proof assistants?
Code generation?
Universes of syntax with binding?

Autosubst Automation

.sig

.v

Schäfer, Tebbi, Smolka – CPP ‘15
S, Schäfer, Kaiser – CPP ‘19

Automatically
determined which
substitutions are

required

Supported Syntax

Autosubst 2: Reasoning with Multi-Sorted de Bruijn

Terms and Vector Substitutions – S., Schäfer, Kaiser, CPP ‘19

• Polyadic binders
• First-class renamings
• External sorts/sort constructors
• Many-sorted syntax
• Mutual inductive syntax
• Variadic syntax
• Simplified definitions for first-

order sorts
• Modular syntax

Supporting Many-Sorted Syntax
by Vector Substitutions
Example: Call-by-Value System F

Variadic Syntax

Different Versions of the Autosubst Library
• Autosubst

• Implemented using Ltac
Inductive term :=

| Var (x : var)

| App (s t : term)

| Lam (s : {bind term}).

• Autosubst 2
• Re-implementation in Haskell [S, Schäfer, Kaiser, ‘19]
• OCaml version [Dapprich ‘21]
• MetaCoq version [Dapprich ‘21]

• Lean emulation by Marmaduke, A., Ingle, A., & Morris, J. G. (2025)

Some trade-offs:
• How expressive?

• What can be
generated? Tactics,
notations?

• How maintainable
for different
versions of Rocq?

• Can the code be
inspected/changed
manually?

https://www.ps.uni-saarland.de/autosubst/doc/Autosubst.Autosubst_Basics.html#var
https://www.ps.uni-saarland.de/autosubst/doc/Plain.Demo.html#term
https://www.ps.uni-saarland.de/autosubst/doc/Autosubst.Autosubst_Classes.html#8d6a85eaeff4db0402876b86f2fadc0b
https://www.ps.uni-saarland.de/autosubst/doc/Plain.Demo.html#term
https://www.ps.uni-saarland.de/autosubst/doc/Autosubst.Autosubst_Classes.html#8d6a85eaeff4db0402876b86f2fadc0b

Projects using Autosubst/Autosubst 2
• Adjedi et al. use Autosubst 2 to deal with the raw syntax of a mechanization of the metatheory of Martin-Löf Type Theory.

• Castro shows that bounded quantification makes subtyping and type checking undecidable in System F≤: using the synthetic approach of the
Coq Library of Undecidability Proofs

• Dudenhefner and Pautasso use Autosubst to provide binder boilerplate for a purely syntactical proof of strong normalization for the simply
typed λ-calculus

• Forster et al. present a formalization of the metatheory of call-by-push-value

• Forster, Kirst and Wehr prove completeness theorems for first-order logic

• Giarrusso et al. use Autosubst to generate metatheory of Scala’s core type system Ð

• Kaiser et al. formally verify the correspondence between the two sorted presentation of System F and its presentation as a pu re type system

• Mizuno and Sumii formally verify the correspondence between call-by-need and call-by-name. Their development also includes a proof of the
standardization theorem for λ-calculus.

• Pottier presents a machine checked development of the CPS translation for the pure λ-calculus with a let construct.

• Spies and Forster formalise undecidability results concerning higher-order unification in the simply-typed lambda-calculus with beta-
conversion

• Timany et al. present a logical relations model of a higher-order functional programming language with impredicative and imperative features
and show that scoped effectful computations are observationally pure.

• Timany and Birkedal build a tool for interactive mechanized relational verification of programs written in a concurrent higher-order imperative
programming language with continuations.

• Tirore et al. use Autosubst 2 to generate syntax for multiparty session types

• Wand et al. present a complete reasoning principle for contextual equivalence in an untyped probabilistic programming languag e.

• Winterhalter uses Autosubst 2 to deal with binders for ghost type theory (GTT)

Well Scoped Syntax
... but: also complicates things.

Idea: Terms are indexed by the upper bound of free variables.
For example:

Inductive tm (n : nat) :=

| var : fin n → tm n

| app : tm n → tm n → tm n

| lam : tm (S n) → tm n.

Example: 𝜂-reduction rule for 𝜆-terms

Well scoped by construction – if
the shift is not included, an error is thrown

Adams, R.: Formalized metatheory with terms represented by an indexed family of types. In: Types for Proofs
and Programs, ‘06.
Bird, R., Paterson, R.: de Bruijn notation as a nested datatype. JFP, ‘99.

One Bottleneck: Efficiency of Rewriting

Mathis Bouverot-Dupuis:
Recent internship with Théo Winterhalter on a
reflective version of the asimpl tactic.

What Other Binder Support Should There Be?

• Support for not only decidability but matching with assumptions
• Support for traversals over syntax with binders

• Allais et al., JFP ’21 in Agda
• Intrinsically-encoded inductive types, e.g.

• Allais et al., JFP ’21
• Fiore/ Szamozvancev, POPL ‘22

• Binding for Substructural Languages, e.g.
• Wood and Atkey - A framework for semiring-annotated type systems,

ESOP ‘22
• Zackon, Sano, Momigliano, Pientka – Split Decisions: Explicit Contexts for

Substructural Languages, CPP ’25

What Form Should a Binder Library Take?
Comparison of three approaches:
• Special-purpose proof assistant (here:

Beluga)
• Library with code generation (Autosubst)
• Library using an intrinsic representation by

Allais et al.

How many/which
theoretical

foundations are
necessary?

Today’s Talk

1. Autosubst – a library for binders
2. Coq à la Carte - Towards a library for modular proofs

Today’s Talk

1. Autosubst – a library for binders
2. Coq à la Carte - Towards a library for modular proofs

Proof libraries are useful…
but how do they cope with
inductive proofs?

Extending Inductive Proofs

• You start with the lambda-calculus:
𝑠, 𝑡 ∈ 𝑡𝑚 ∶≔ 𝑥 𝑠 𝑡 𝜆𝑥. 𝑠

• You give
• Recursive functions on terms
• Proofs by induction on terms
• And predicates and proofs over terms

• … and then want to extend this calculus, e.g.
by Boolean expressions:

𝑠, 𝑡 ∈ 𝑡𝑚 ∶≔ ⋯ 𝑏 𝑖𝑓 𝑠 𝑡ℎ𝑒𝑛 𝑡 𝑒𝑙𝑠𝑒 𝑢

• True modularity: “[..] add new cases to the
datatype [..] without recompiling existing code.”

Not necessarily as
regular as in the case

of substitution, but
modular enough that it
doesn’t exchange with

extensions

Can we avoid the copy-paste?

Related Work (I)
True Modularity in Haskell: Data Types a la Carte [Swierstra, 2008]

• Features as functors, e.g.
Inductive exp𝜆 (exp : Type) :=

| var : nat → exp 𝜆 exp

| app : exp → exp → exp 𝜆 exp

| abs : exp → exp 𝜆 exp.

• A general expression type as fixed point of functors:
Inductive exp (F : Type → Type) : type :=

| In : F (exp F) → exp F.

and variants which instantiate the general data type with coproducts of
feature functors.

• Functions = algebras, assembling via type classes

Related Work (II)
True Modularity in a Proof Assistant?

• Problem: The general expression type is impossible in a proof
assistant due to the restriction to positivity!

• Solution: Encode the functor.
• Modular Type Safety Proofs in Agda [Schwaab and Siek, 2013]
• Meta-Theory a la Carte [Delaware et al., 2008]
• Generic Data Types a la Carte [Keuchel et al., 2013]
• Modular Monadic Meta-Theory [Delaware et al., 2013]

A Practical Approach to Modular Syntax
• Modular syntax via functions and variants with direct injections inspired by

Data Types a la Carte [Swierstra ‘08]

• Tool support:
• Boilerplate generation with an extension of Autosubst 2
• Assembling via MetaRocq [Sozeau et al., ‘19]

• Result:
• Practical modular developments
• Improvement from 1000 loc/feature to 125 loc/feature

Inductive exp (F : Type → Type) : type :=

| In : F (exp F) → exp F.

Demo
Generated Parts: Defining a New Variant

Possibility to lift constructors from
features to variants [Swierstra, ‘08]

Demo
Generated Parts

All of this is automatically generated!

Demo
Generated Parts

Generated proof of the
retract property

Demo
User-defined Parts: Generation of Inductive Predicates

Demo
User-defined Parts: A Proof of Type Safety (Composition)

Demo
User-defined Parts: Generation of Inductive Predicates

Demo
User-defined Parts: A Proof of Type Safety

Demo
User-defined Parts: A Proof of Type Safety

Demo
User-defined Parts: A Proof of Type Safety

Demo
User-defined Parts: A Proof of Type Safety

Demo
User-defined Parts: A Proof of Type Safety

Tactic that automatically uses
retracts to do case analysis on a

modular data type

Demo
User-defined Parts: A Proof of Type Safety

Tactic that automatically uses
retracts to build instances of a

modular type

Demo
User-defined Parts: A Proof of Type Safety

Demo
User-defined Parts: A Proof of Type Safety

Demo
User-defined Parts: A Proof of Type Safety (Composition)

Automatic
composition via

MetaRocq

How Far Does This Scale?

… and all of this can be combined with the
substitution boilerplate generation of
Autosubst.

LOC-wise: A comparably small
overhead compared to a non-

modular development;
achieved by a mix of library &

metaprogramming

But…

Very much a
proof of concept;
more mature use

of tactics

Example of strong
normalization – but

missing a bigger library;
e.g. building on an

existing development

Dependency on specific version
of MetaRocq – complicated

installation; not working with
current version of MetaRocq

There are still parts that
resemble a modular

proof – can we eliminate
them?

expmod
+

modular
proofs

expmod
+ proofs

More Recent Related Work

• Lean library using Lean’s
metaprogramming facilities [Shahin,
Types ‘25]

• Based on Family Polymorphism:
• Extensible Metatheory Mechanization via

Family Polymorphism [Jin et al., PLDI ‘23]
• Persimmon: Nested Family Polymorphism

with Extensible Variant Types [Kravchuk-
Kirilyuk, OOPSLA ‘24]

• Certified Compilers a la Carte [Ebresafe et
al., PLDI ‘25]

How different is a proof allowed
to be to

- develop a modular library
- use a modular library?

Today’s Talk

1. Autosubst – a library for binders
2. Towards a library for modular proofs

Thanks for your attention!
Questions?

	Default Section
	Slide 1: The Autosubst Library
	Slide 4: Today’s Talk
	Slide 5: Today’s Talk

	Motivation/History
	Slide 8
	Slide 9
	Slide 10: Syntax/Variables in a Textbook
	Slide 11: Syntax/Variables in a Textbook
	Slide 12: Syntax/Variables in a Textbook
	Slide 13: … and that’s without the proofs!
	Slide 14
	Slide 15
	Slide 16: POPLMark’s Criteria for Success
	Slide 17: Autosubst

	Autosubst in a Nutshell
	Slide 20: There’s a Variety of Binding Techniques in a Proof Assistant!
	Slide 21: De Bruijn Syntax
	Slide 23: (Parallel) Substitutions de Bruijn ‘72
	Slide 24
	Slide 25: The Sigma Calculus [Abadi et al. ‘96] A Convergent [Curien et al. ‘96] + Complete [Schäfer et al. ‘15] Rewriting System

	Demo: A Proof of Type Safety
	Slide 26: Demo: A Proof of Type Safety
	Slide 27: Demo: A Proof of Type Safety
	Slide 28: Demo: A Proof of Type Safety
	Slide 29: Demo: A Proof of Type Safety
	Slide 30: Demo: A Proof of Type Safety
	Slide 31: Demo: A Proof of Type Safety

	Autosubst
	Slide 36: Autosubst
	Slide 37
	Slide 38
	Slide 39: One Main Culprit: Compositionality of Instantiation
	Slide 40: Autosubst
	Slide 41: Autosubst Automation

	Extensions
	Slide 43: Supported Syntax
	Slide 44: Supporting Many-Sorted Syntax by Vector Substitutions Example: Call-by-Value System F
	Slide 45: Variadic Syntax

	Impact Autosubst
	Slide 48: Different Versions of the Autosubst Library
	Slide 49: Projects using Autosubst/Autosubst 2

	Autosubst - Lessons Learned
	Slide 53: Well Scoped Syntax
	Slide 54: One Bottleneck: Efficiency of Rewriting

	Current Area
	Slide 60: What Other Binder Support Should There Be?
	Slide 61: What Form Should a Binder Library Take?
	Slide 64: Today’s Talk

	Towards a Library of Proofs
	Slide 66: Today’s Talk
	Slide 67
	Slide 68: Extending Inductive Proofs
	Slide 69
	Slide 71: Related Work (I) True Modularity in Haskell: Data Types a la Carte [Swierstra, 2008]
	Slide 72: Related Work (II) True Modularity in a Proof Assistant?
	Slide 73
	Slide 74: A Practical Approach to Modular Syntax

	Demo - Modularity
	Slide 75: Demo Generated Parts: Defining a New Variant
	Slide 76: Demo Generated Parts
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

	Conclusion Modularity
	Slide 90: How Far Does This Scale?
	Slide 91: But…
	Slide 93: More Recent Related Work

	The Next Chapter
	Slide 95: Today’s Talk
	Slide 96: Thanks for your attention!

