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How much do you need to know about the formalization of 
binders to write proofs about programming languages in a 

proof assistant? 
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Sørenson, Urzyczyn - Lectures on the Curry-Howard Isomorphism

Define preterms…
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… actual terms …



Syntax/Variables in a Textbook

Sørenson, Urzyczyn - Lectures on the Curry-Howard Isomorphism

… and definitions on 
terms.



Which lemmas 
do we need?

How to apply 
them?

… and that’s without the proofs!



How much do you need to know about the formalization of 
binders to write proofs about programming languages in a 

proof assistant? 



• How to state lemmas in this presentation? 
• Which lemmas on substitution should I prove? 
• How do I prove them? 
• How do I use them?



POPLMark’s Criteria for Success



Autosubst

A choice of 
• Binder representation
• Definition of 

substitutions
• Set of substitution 

lemmas 
that requires minimum 
input from the user

+ 
A library format to 
automatically generate the 
corresponding boilerplate, 
including automation 
tactic
that requires minimum 
input from the user

Schäfer, Tebbi, Smolka – CPP ‘15 
S, Schäfer, Kaiser – CPP ‘19



There’s a Variety of Binding Techniques in a 
Proof Assistant!

Source: https://www.seas.upenn.edu/pclub/poplmark  

Library vs 
special-

purpose proof 
assistants?

https://www.seas.upenn.edu/pclub/poplmark
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De Bruijn, Nicolaas Govert. "Lambda calculus 
notation with nameless dummies, a tool for 
automatic formula manipulation, with application 
to the Church-Rosser theorem." 1972

De Bruijn Syntax
Idea: 𝛼-equivalence = definitional 
equality
Binders are presented by references 
and induce a scope change. 
Terms: 

Inductive tm: Type := 
| var_tm : nat → tm 
| app : tm → tm → tm 
| lam : tm → tm.

Example term: 
𝜆 𝑥. 𝑧 𝜆 𝑦. 𝑥 𝑦 𝑧 ⇒ 𝜆. 1 𝜆. 1 0 2
 

lam (app (var_tm 1) (lam 
(app (app (var_tm 1) (var_tm 
0)) (var_tm 2)))



(Parallel) Substitutions
de Bruijn ‘72

23

Two-Level Approach: Adams, R.: Formalized metatheory with terms represented by an indexed family of 
types. Types for Proofs and Programs, ‘06.

 

Requires again substitution

Substitution without 
copy and paste:

Altenkirch, Burke, 
Wadler, LFMTP ‘25

Goal: Instantiation with substitution, _ [ _ ] : tm -> (ℕ -> tm) -> tm

Primitives sufficient to define 
e.g. beta-reduction





The Sigma Calculus [Abadi et al. ‘96]
A Convergent [Curien et al. ‘96] + Complete [Schäfer et al. ‘15] Rewriting System

25

s = t  can be decided via the above rewriting system

Implemented via a 
rewriting tactic called 
asimpl that normalizes 
a term using the rewriting 
system



Demo: A Proof of Type Safety

• Use the one from RocqPL
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Autosubst

A choice of 
• Binder representation
• Definition of 

substitutions
• Set of substitution 

lemmas 
that requires minimum 
input from the user







One Main Culprit: Compositionality of 
Instantiation



Autosubst

A choice of 
• Binder representation
• Definition of 

substitutions
• Set of substitution 

lemmas 
that requires minimum 
input from the user

+ 

A library format to 
automatically generate the 
corresponding boilerplate, 
including automation 
tactic
to require minimum input 
from the user

Different solutions:
Special-purpose proof assistants?
Code generation? 
Universes of syntax with binding?



Autosubst Automation

.sig

.v

Schäfer, Tebbi, Smolka – CPP ‘15 
S, Schäfer, Kaiser – CPP ‘19

Automatically 
determined which 
substitutions are 

required



Supported Syntax

Autosubst 2: Reasoning with Multi-Sorted de Bruijn

Terms and Vector Substitutions – S., Schäfer, Kaiser, CPP ‘19

• Polyadic binders
• First-class renamings
• External sorts/sort constructors
• Many-sorted syntax 
• Mutual inductive syntax 
• Variadic syntax
• Simplified definitions for first-

order sorts
• Modular syntax



Supporting Many-Sorted Syntax
by Vector Substitutions
Example: Call-by-Value System F



Variadic Syntax



Different Versions of the Autosubst Library
• Autosubst 

• Implemented using Ltac
Inductive term :=

| Var (x : var)

| App (s t : term)

| Lam (s : {bind term}).

• Autosubst 2 
• Re-implementation in Haskell [S, Schäfer, Kaiser, ‘19]
• OCaml version [Dapprich ‘21]
• MetaCoq version [Dapprich ‘21]

• Lean emulation by Marmaduke, A., Ingle, A., & Morris, J. G. (2025)

Some trade-offs:
• How expressive?

• What can be 
generated? Tactics, 
notations?

• How maintainable 
for different 
versions of Rocq?

• Can the code be 
inspected/changed 
manually?

https://www.ps.uni-saarland.de/autosubst/doc/Autosubst.Autosubst_Basics.html#var
https://www.ps.uni-saarland.de/autosubst/doc/Plain.Demo.html#term
https://www.ps.uni-saarland.de/autosubst/doc/Autosubst.Autosubst_Classes.html#8d6a85eaeff4db0402876b86f2fadc0b
https://www.ps.uni-saarland.de/autosubst/doc/Plain.Demo.html#term
https://www.ps.uni-saarland.de/autosubst/doc/Autosubst.Autosubst_Classes.html#8d6a85eaeff4db0402876b86f2fadc0b


Projects using Autosubst/Autosubst 2
• Adjedi et al. use Autosubst 2 to deal with the raw syntax of a mechanization of the metatheory of Martin-Löf Type Theory. 

• Castro shows that bounded quantification makes subtyping and type checking undecidable in System F≤: using the synthetic approach of the 
Coq Library of Undecidability Proofs

• Dudenhefner and Pautasso use Autosubst to provide binder boilerplate for a purely syntactical proof of strong normalization for the simply 
typed λ-calculus

• Forster et al. present a formalization of the metatheory of call-by-push-value

• Forster, Kirst and Wehr prove completeness theorems for first-order logic

• Giarrusso et al. use Autosubst to generate metatheory of Scala’s core type system Ð

• Kaiser et al. formally verify the correspondence between the two sorted presentation of System F and its presentation as a pu re type system

• Mizuno and Sumii formally verify the correspondence between call-by-need and call-by-name. Their development also includes a proof of the 
standardization theorem for λ-calculus.

• Pottier presents a machine checked development of the CPS translation for the pure λ-calculus with a let construct.

• Spies and Forster formalise undecidability results concerning higher-order unification in the simply-typed lambda-calculus with beta-
conversion

• Timany et al. present a logical relations model of a higher-order functional programming language with impredicative and imperative features 
and show that scoped effectful computations are observationally pure.

• Timany and Birkedal build a tool for interactive mechanized relational verification of programs written in a concurrent higher-order imperative 
programming language with continuations.

• Tirore et al. use Autosubst 2 to generate syntax for multiparty session types

• Wand et al. present a complete reasoning principle for contextual equivalence in an untyped probabilistic programming languag e.

• Winterhalter uses Autosubst 2 to deal with binders for ghost type theory (GTT)



Well Scoped Syntax
... but: also complicates things.

Idea: Terms are indexed by the upper bound of free variables. 
For example: 

Inductive tm (n : nat) := 

| var : fin n → tm n 

| app : tm n → tm n → tm n 

| lam : tm (S n) → tm n.

Example: 𝜂-reduction rule for 𝜆-terms

Well scoped by construction – if 
the shift is not included, an error is thrown

Adams, R.: Formalized metatheory with terms represented by an indexed family of types. In: Types for Proofs 
and Programs, ‘06. 
Bird, R., Paterson, R.: de Bruijn notation as a nested datatype. JFP, ‘99.



One Bottleneck: Efficiency of Rewriting

Mathis Bouverot-Dupuis:
Recent internship with Théo Winterhalter on a 
reflective version of the asimpl tactic.



What Other Binder Support Should There Be?

• Support for not only decidability but matching with assumptions
• Support for traversals over syntax with binders

• Allais et al., JFP ’21 in Agda
• Intrinsically-encoded inductive types, e.g.

• Allais et al., JFP ’21
• Fiore/ Szamozvancev, POPL ‘22

• Binding for Substructural Languages, e.g.
• Wood and Atkey - A framework for semiring-annotated type systems, 

ESOP ‘22
• Zackon, Sano, Momigliano,  Pientka – Split Decisions: Explicit Contexts for 

Substructural Languages, CPP ’25



What Form Should a Binder Library Take?
Comparison of three approaches: 
• Special-purpose proof assistant (here: 

Beluga)
• Library with code generation (Autosubst)
• Library using an intrinsic representation by 

Allais et al.

How many/which 
theoretical 

foundations are 
necessary?



Today’s Talk

1. Autosubst – a library for binders
2. Coq à la Carte - Towards a library for modular proofs



Today’s Talk

1. Autosubst – a library for binders
2. Coq à la Carte - Towards a library for modular proofs



Proof libraries are useful…
but how do they cope with 
inductive proofs?



Extending Inductive Proofs

• You start with the lambda-calculus: 
𝑠, 𝑡 ∈ 𝑡𝑚 ∶≔ 𝑥  𝑠 𝑡 𝜆𝑥. 𝑠

• You give 
• Recursive functions on terms
• Proofs by induction on terms
• And predicates and proofs over terms 

• … and then want to extend this calculus, e.g. 
by Boolean expressions: 

𝑠, 𝑡 ∈ 𝑡𝑚 ∶≔ ⋯  𝑏 𝑖𝑓 𝑠 𝑡ℎ𝑒𝑛 𝑡 𝑒𝑙𝑠𝑒 𝑢

• True modularity: “[..] add new cases to the 
datatype [..] without recompiling existing code.”

Not necessarily as 
regular as in the case 

of substitution, but 
modular enough that it 
doesn’t exchange with 

extensions



Can we avoid the copy-paste? 



Related Work (I)
True Modularity in Haskell: Data Types a la Carte [Swierstra, 2008]

• Features as functors, e.g. 
Inductive exp𝜆 (exp : Type) := 

| var : nat → exp 𝜆 exp

| app : exp → exp → exp 𝜆 exp 

| abs : exp → exp 𝜆 exp. 

• A general expression type as fixed point of functors: 
Inductive exp (F : Type → Type) : type := 

| In : F (exp F) → exp F. 

and variants which instantiate the general data type with coproducts of 
feature functors. 

• Functions = algebras, assembling via type classes



Related Work (II)
True Modularity in a Proof Assistant?

• Problem: The general expression type is impossible in a proof 
assistant due to the restriction to positivity! 

• Solution: Encode the functor.
• Modular Type Safety Proofs in Agda [Schwaab and Siek, 2013]
• Meta-Theory a la Carte [Delaware et al., 2008]
• Generic Data Types a la Carte [Keuchel et al., 2013]
• Modular Monadic Meta-Theory [Delaware et al., 2013]





A Practical Approach to Modular Syntax
• Modular syntax via functions and variants with direct injections inspired by 

Data Types a la Carte [Swierstra ‘08]

• Tool support:
• Boilerplate generation with an extension of Autosubst 2
• Assembling via MetaRocq [Sozeau et al., ‘19]

• Result:
• Practical modular developments 
• Improvement from 1000 loc/feature to 125 loc/feature

Inductive exp (F : Type → Type) : type := 

| In : F (exp F) → exp F. 



Demo
Generated Parts: Defining a New Variant

Possibility to lift constructors from 
features to variants [Swierstra, ‘08]



Demo
Generated Parts



All of this is automatically generated!

Demo
Generated Parts

Generated proof of the 
retract property



Demo
User-defined Parts: Generation of Inductive Predicates
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Demo
User-defined Parts: A Proof of Type Safety

Tactic that automatically uses 
retracts to do case analysis on a 

modular data type



Demo
User-defined Parts: A Proof of Type Safety

Tactic that automatically uses 
retracts to build instances of a 

modular type



Demo
User-defined Parts: A Proof of Type Safety



Demo
User-defined Parts: A Proof of Type Safety



Demo
User-defined Parts: A Proof of Type Safety (Composition)

Automatic 
composition via 

MetaRocq



How Far Does This Scale?

… and all of this can be combined with the 
substitution boilerplate generation of 
Autosubst.

LOC-wise: A comparably small 
overhead compared to a non-

modular development; 
achieved by a mix of library & 

metaprogramming  



But…

Very much a 
proof of concept; 
more mature use 

of tactics  

Example of strong 
normalization – but 

missing a bigger library; 
e.g. building on an 

existing development

Dependency on specific version 
of MetaRocq – complicated 

installation; not working with 
current version of MetaRocq

There are still parts that 
resemble a modular 

proof – can we eliminate 
them?

expmod
+ 

modular 
proofs

expmod
+ proofs



More Recent Related Work

• Lean library using Lean’s 
metaprogramming facilities [Shahin, 
Types ‘25]

• Based on Family Polymorphism:
• Extensible Metatheory Mechanization via 

Family Polymorphism [Jin et al., PLDI ‘23]
• Persimmon: Nested Family Polymorphism 

with Extensible Variant Types [Kravchuk-
Kirilyuk, OOPSLA ‘24]

• Certified Compilers a la Carte [Ebresafe et 
al., PLDI ‘25]

How different is a proof allowed 
to be to 

-  develop a modular library 
- use a modular library?



Today’s Talk

1. Autosubst – a library for binders
2. Towards a library for modular proofs



Thanks for your attention!
Questions?
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