
The UniMath Rocq Library

Niels van der Weide

1/44



UniMath

▶ UniMath is a library of formalized mathematics using the
Rocq proof assistant

▶ It is based on homotopy type theory

▶ There are many results in UniMath, especially in the area of
category theory and bicategory theory

Link:

https://github.com/UniMath/UniMath

2/44

https://github.com/UniMath/UniMath


Table of Contents

UniMath: the who

UniMath: the what

UniMath: the how

UniMath: the why

Conclusion

3/44



Table of Contents

UniMath: the who

UniMath: the what

UniMath: the how

UniMath: the why

Conclusion

3/44



The Founders of UniMath

UniMath was founded in 2014

4/44



The UniMath Coordination Committee

The current coordination committee:

▶ Benedikt Ahrens

▶ Daniel Grayson

▶ Arnoud van der Leer

▶ Michael Lindgren

▶ Peter LeFanu Lumsdaine

▶ Ralph Matthes

▶ Niels van der Weide

We are responsible for maintenance and we review pull requests.

5/44



The UniMath Schools

6/44



The UniMath Schools

6/44



Table of Contents

UniMath: the who

UniMath: the what

UniMath: the how

UniMath: the why

Conclusion

6/44



The UniMath Organisation

7/44



The UniMath Organisation

There are various repositories in the UniMath organisation.

▶ SetHITs and GrpdHITs: study of higher inductive types

▶ TypeTheory: semantics of type theory in homotopy type
theory

▶ Symmetry book: studies symmetry of mathematical objects in
homotopy type theory

▶ Large Cat Modules: study of higher order abstract syntax

Agda UniMath, which was inspired by the Symmetry Book, is
another library of univalent mathematics, but written in Agda.

8/44



The Rocq UniMath Repository

9/44



The Rocq UniMath Repository

▶ There are some developments of more traditional areas of
mathematics in UniMath: real numbers and p-adic numbers

▶ Main focus: (higher) category theory and applications

▶ Algebraic Theories: formalization of “Classical lambda
calculus in modern dress”

▶ Substitution Systems: categorical study of syntax

10/44



What is in UniMath?

11/44



Lines of Code

Directory LOC

Category Theory 272827
Bicategories 247502

Substitution Systems 25234
Algebra 21917

Order Theory 20297
Homological Algebra 13848
Algebraic Theories 13116
Model Categories 12928

Foundations 11987
Real Numbers 9483

PAdics 7906
Combinatorics 6904

12/44



Category Theory

13/44



Biategory Theory

14/44



Table of Contents

UniMath: the who

UniMath: the what

UniMath: the how

UniMath: the why

Conclusion

14/44



Homotopy Type Theory

▶ Homotopy type theory is a foundations for mathematics

▶ Key feature: the univalence axiom, which expresses that
identity corresponds to isomorphism for types

▶ Successful applications: synthetic homotopy theory, univalent
category theory

▶ Homotopy type theory is available in various proof assistants

15/44



HoTT Libraries

16/44



HoTT Libraries

16/44



Types as Spaces

Type Theory Homotopy Theory

Types X Spaces X
Terms x : X Points x ∈ X
p : x =X y Paths p from x to y
h : p =x=y q Homotopy h from p to q

17/44



Types as Spaces

18/44



Types as Spaces

19/44



Types as Spaces

20/44



Types as Spaces

21/44



Example: The Circle

22/44



Some Observations

Identity is proof relevant in homotopy type theory

▶ Specifically, we could have p, q : x = y such that p ̸= q!

▶ Proofs of identity can carry more information.

▶ For instance, proofs p : G = G ′ between groups G and G ′ are
the same as isomorphism

23/44



Dependent Types and Transport

Type Theory Homotopy Theory

Types X Spaces X
Terms x : X Points x ∈ X
p : x =X y Paths p from x to y
h : p =x=y q Homotopy h from p to q
Dependent types Fibrations

24/44



Dependent Types

25/44



Transport

26/44



The Univalence Axiom

Key feature of homotopy type theory: the univalence axiom,
which characterizes when types are identified.

Definition
A function f : X → Y is called an equivalence if for all y there is
a unique x with f (x) = y .

Proposition

For all types X and Y we have a map idtoequivX ,Y sending
identities X = Y to equivalences of types X ≃ Y .

Axiom (The Univalence Axiom)

For all X and Y the map idtoequivX ,Y is an equivalence.

27/44



The Univalence Axiom

Key feature of homotopy type theory: the univalence axiom,
which characterizes when types are identified.

Definition
A function f : X → Y is called an equivalence if for all y there is
a unique x with f (x) = y .

Proposition

For all types X and Y we have a map idtoequivX ,Y sending
identities X = Y to equivalences of types X ≃ Y .

Axiom (The Univalence Axiom)

For all X and Y the map idtoequivX ,Y is an equivalence.

27/44



The Univalence Axiom

Key feature of homotopy type theory: the univalence axiom,
which characterizes when types are identified.

Definition
A function f : X → Y is called an equivalence if for all y there is
a unique x with f (x) = y .

Proposition

For all types X and Y we have a map idtoequivX ,Y sending
identities X = Y to equivalences of types X ≃ Y .

Axiom (The Univalence Axiom)

For all X and Y the map idtoequivX ,Y is an equivalence.

27/44



The Univalence Axiom

Key feature of homotopy type theory: the univalence axiom,
which characterizes when types are identified.

Definition
A function f : X → Y is called an equivalence if for all y there is
a unique x with f (x) = y .

Proposition

For all types X and Y we have a map idtoequivX ,Y sending
identities X = Y to equivalences of types X ≃ Y .

Axiom (The Univalence Axiom)

For all X and Y the map idtoequivX ,Y is an equivalence.

27/44



The Univalence Axiom

28/44



The Univalence Axiom

28/44



The Univalence Axiom

28/44



The Univalence Axiom

28/44



The Univalence Axiom

28/44



Consequences of the Univalence Axiom

The univalence axiom implies various structure identity
principles (SIP)

▶ Identity of groups is the same as isomorphism

▶ Identity of rings is the same as isomorphism

▶ Identity of modules is the same as isomorphism

Later we discuss structure identity principles for categories

29/44



Homotopy Levels

Since identity is proof relevant, we can classify types by the
“complexity” of their identity types. This leads to the notion of
homotopy level (h-level).

Definition
We say

▶ A type X is an hSet if for all x , y : X and p, q : x = y we
have p = q.

▶ A type X is a 1-type if for all x , y : X the type x = y is a set.
Specifically, for all points x , y : X , paths p, q : x = y , and
homotopies h1, h2 : p = q, we have h1 = h2.

▶ A type X is a 2-type if for all x , y : X the type x = y is a
1-type.

and so on

30/44



Homotopy Levels

Since identity is proof relevant, we can classify types by the
“complexity” of their identity types. This leads to the notion of
homotopy level (h-level).

Definition
We say

▶ A type X is an hSet if for all x , y : X and p, q : x = y we
have p = q.

▶ A type X is a 1-type if for all x , y : X the type x = y is a set.
Specifically, for all points x , y : X , paths p, q : x = y , and
homotopies h1, h2 : p = q, we have h1 = h2.

▶ A type X is a 2-type if for all x , y : X the type x = y is a
1-type.

and so on

30/44



Homotopy Levels

Since identity is proof relevant, we can classify types by the
“complexity” of their identity types. This leads to the notion of
homotopy level (h-level).

Definition
We say

▶ A type X is an hSet if for all x , y : X and p, q : x = y we
have p = q.

▶ A type X is a 1-type if for all x , y : X the type x = y is a set.

Specifically, for all points x , y : X , paths p, q : x = y , and
homotopies h1, h2 : p = q, we have h1 = h2.

▶ A type X is a 2-type if for all x , y : X the type x = y is a
1-type.

and so on

30/44



Homotopy Levels

Since identity is proof relevant, we can classify types by the
“complexity” of their identity types. This leads to the notion of
homotopy level (h-level).

Definition
We say

▶ A type X is an hSet if for all x , y : X and p, q : x = y we
have p = q.

▶ A type X is a 1-type if for all x , y : X the type x = y is a set.
Specifically, for all points x , y : X , paths p, q : x = y , and
homotopies h1, h2 : p = q, we have h1 = h2.

▶ A type X is a 2-type if for all x , y : X the type x = y is a
1-type.

and so on

30/44



Homotopy Levels

Since identity is proof relevant, we can classify types by the
“complexity” of their identity types. This leads to the notion of
homotopy level (h-level).

Definition
We say

▶ A type X is an hSet if for all x , y : X and p, q : x = y we
have p = q.

▶ A type X is a 1-type if for all x , y : X the type x = y is a set.
Specifically, for all points x , y : X , paths p, q : x = y , and
homotopies h1, h2 : p = q, we have h1 = h2.

▶ A type X is a 2-type if for all x , y : X the type x = y is a
1-type.

and so on

30/44



Homotopy Levels

Since identity is proof relevant, we can classify types by the
“complexity” of their identity types. This leads to the notion of
homotopy level (h-level).

Definition
We say

▶ A type X is an hSet if for all x , y : X and p, q : x = y we
have p = q.

▶ A type X is a 1-type if for all x , y : X the type x = y is a set.
Specifically, for all points x , y : X , paths p, q : x = y , and
homotopies h1, h2 : p = q, we have h1 = h2.

▶ A type X is a 2-type if for all x , y : X the type x = y is a
1-type.

and so on

30/44



Homotopy Levels

31/44



Homotopy Levels

31/44



Homotopy Levels

31/44



Table of Contents

UniMath: the who

UniMath: the what

UniMath: the how

UniMath: the why

Conclusion

31/44



Categories in Homotopy Type Theory

▶ In homotopy type theory, we have two notions of category:
setcategories and univalent categories

▶ This bifurcation reflects two ways of doing category theory:
either up to isomorphism or up to adjoint equivalence

▶ Setcategories: category theory up to isomorphism

▶ Univalent categories: category theory up to adjoint
equivalence

32/44



Categories in Homotopy Type Theory

Definition
A category1 is given by

▶ a type O of objects

▶ for all x , y : O a hSet x → y of morphisms

▶ for each x : O an identity morphism id : x → x

▶ for each f : x → y and g : y → z , a composition f · g : x → z

such that the usual identity and associativity laws hold.

1This is called “precategory” in the HoTT book
33/44



Categories in Homotopy Type Theory

Definition
A category1 is given by

▶ a type O of objects

▶ for all x , y : O a hSet x → y of morphisms

▶ for each x : O an identity morphism id : x → x

▶ for each f : x → y and g : y → z , a composition f · g : x → z

such that the usual identity and associativity laws hold.

1This is called “precategory” in the HoTT book
33/44



Categories in Homotopy Type Theory

Definition
A category1 is given by

▶ a type O of objects

▶ for all x , y : O a hSet x → y of morphisms

▶ for each x : O an identity morphism id : x → x

▶ for each f : x → y and g : y → z , a composition f · g : x → z

such that the usual identity and associativity laws hold.

1This is called “precategory” in the HoTT book
33/44



Categories in Homotopy Type Theory

34/44



Categories in Homotopy Type Theory

Note: since identity is proof relevant, the identity type of objects
could be nontrivial
In the semantics, this notion does not correspond to categories

34/44



Correcting the Notion of Category

There are two ways to “correct” the notion of category

▶ Setcategories: identity on objects is trivial

▶ Univalent categories: identity on objects is determined by
the morphisms

Definition
A category is called a setcategory2 if its type of objects is an hSet.

2This is called “strict” in the HoTT book
35/44



Correcting the Notion of Category

There are two ways to “correct” the notion of category

▶ Setcategories: identity on objects is trivial

▶ Univalent categories: identity on objects is determined by
the morphisms

Definition
A category is called a setcategory2 if its type of objects is an hSet.

2This is called “strict” in the HoTT book
35/44



Setcategories

36/44



Univalent Categories

Main idea: identity on objects is determined by the morphisms in
a univalent category

Proposition

For all objects x and y in a category C we have a map
idtoisox ,y : x = y → x ∼= y sending identities p : x = y to
isomorphisms idtoisox ,y (p) : x ∼= y.

Definition
A category C is called univalent if for all x , y : C the map
idtoisox ,y is an equivalence of types.

So: identity on objects is the same as isomorphism.

37/44



Univalent Categories

Main idea: identity on objects is determined by the morphisms in
a univalent category

Proposition

For all objects x and y in a category C we have a map
idtoisox ,y : x = y → x ∼= y sending identities p : x = y to
isomorphisms idtoisox ,y (p) : x ∼= y.

Definition
A category C is called univalent if for all x , y : C the map
idtoisox ,y is an equivalence of types.

So: identity on objects is the same as isomorphism.

37/44



Univalent Categories

Main idea: identity on objects is determined by the morphisms in
a univalent category

Proposition

For all objects x and y in a category C we have a map
idtoisox ,y : x = y → x ∼= y sending identities p : x = y to
isomorphisms idtoisox ,y (p) : x ∼= y.

Definition
A category C is called univalent if for all x , y : C the map
idtoisox ,y is an equivalence of types.

So: identity on objects is the same as isomorphism.

37/44



Univalent Categories

38/44



Univalent Categories

38/44



Setcategories versus Univalent Categories

We can distinguish the notions of setcategory and of univalent
category via their structure identity principles (SIP).

▶ SIP for setcategories: identity of setcategories corresponds
to isomorphism

▶ SIP for univalent categories: identity of univalent categories
corresponds to adjoint equivalence

▶ SIP for functors between univalent categories: identity of
such functors corresponds to natural isomorphism

39/44



Setcategories versus Univalent Categories

We can distinguish the notions of setcategory and of univalent
category via their structure identity principles (SIP).

▶ SIP for setcategories: identity of setcategories corresponds
to isomorphism

▶ SIP for univalent categories: identity of univalent categories
corresponds to adjoint equivalence

▶ SIP for functors between univalent categories: identity of
such functors corresponds to natural isomorphism

39/44



The Univalence Principle for Univalent Categories

40/44



The Univalence Principle for Univalent Categories

40/44



The Univalence Principle for Univalent Categories

40/44



The Univalence Principle for Univalent Categories

40/44



The Univalence Principle for Univalent Categories

40/44



Consequences of the Univalence Principle

▶ Univalence allows us to treat adjoint equivalences as
identities, which allows us to do equivalence induction.

▶ Specifically, to prove a statement

∀(C1, C2 : Catuniv)(e : C1 ≃ C2),P(C1, C1, e)

it suffices to prove

∀(C : Catuniv),P(C, C, id)

41/44



Benefits of the Univalence Principle I

Equivalence induction is useful for various applications, such as
transporting properties/structure along adjoint equivalences.

▶ For instance, one might want to prove that if C1 is locally
Cartesian closed and e : C1 ≃ C2, then C2 is locally Cartesian
closed.

▶ A manual proof is quite technical.

▶ With univalence: trivial

42/44



Benefits of the Univalence Principle I

Equivalence induction is useful for various applications, such as
transporting properties/structure along adjoint equivalences.

▶ For instance, one might want to prove that if C1 is locally
Cartesian closed and e : C1 ≃ C2, then C2 is locally Cartesian
closed.

▶ A manual proof is quite technical.

▶ With univalence: trivial

42/44



Benefits of the Univalence Principle II

Another application of equivalence induction is characterizing
adjoint equivalences.

For instance, one might want to prove

▶ A pseudotransformation is an adjoint equivalence if it is a
pointwise adjoint equivalence

▶ There are similar statements for double categories and
comprehension categories

There’s not enough time to discuss this in some detail.
The main idea:

▶ Equivalences of such structures are built up from equivalences
of simpler structures.

▶ Equivalence induction allows us to treat equivalences of
simpler structures as identities, which simplifies calculational
proofs

43/44



Benefits of the Univalence Principle II

Another application of equivalence induction is characterizing
adjoint equivalences.
For instance, one might want to prove

▶ A pseudotransformation is an adjoint equivalence if it is a
pointwise adjoint equivalence

▶ There are similar statements for double categories and
comprehension categories

There’s not enough time to discuss this in some detail.
The main idea:

▶ Equivalences of such structures are built up from equivalences
of simpler structures.

▶ Equivalence induction allows us to treat equivalences of
simpler structures as identities, which simplifies calculational
proofs

43/44



Benefits of the Univalence Principle II

Another application of equivalence induction is characterizing
adjoint equivalences.
For instance, one might want to prove

▶ A pseudotransformation is an adjoint equivalence if it is a
pointwise adjoint equivalence

▶ There are similar statements for double categories and
comprehension categories

There’s not enough time to discuss this in some detail.
The main idea:

▶ Equivalences of such structures are built up from equivalences
of simpler structures.

▶ Equivalence induction allows us to treat equivalences of
simpler structures as identities, which simplifies calculational
proofs

43/44



Table of Contents

UniMath: the who

UniMath: the what

UniMath: the how

UniMath: the why

Conclusion

43/44



Conclusion

▶ UniMath is library in Rocq based on homotopy type theory,
with a particular focus on (higher) category theory

▶ Homotopy type theory is advantageous for the
formalization of category theory, and it simplifies various
proofs

▶ Check out

https://github.com/UniMath/UniMath

44/44

https://github.com/UniMath/UniMath

	UniMath: the who
	UniMath: the what
	UniMath: the how
	UniMath: the why
	Conclusion

