Natural Language & Proofs: A Neuro-symbolic Perspective

Andre Freitas Reasoning & Explainable AI (ExplAIn) Lab

EuroProofNet Sept 2022

The University of Manchester

ExplAIn Lab

Natural Language Inference (NLI)

<u>Claim:</u> Specialized cells protect the human body from disease-causing microbes by producing chemicals that destroy the microbes.

Fact banks

Expert-level scientific inference & explanation

<u>Claim:</u> BRCA2 promotes the joining of undamaged homologous repair molecules via RAD51 homolog 1 in humans.

Aims for Today

- Selective overview in Mathematical Language Processing (MathLP) - relevant to WG4.
- Emphasis on a particular category of ML model: Large Language Models (LLMs).
- and how to implement semantic and inference controls on the top of this substrate.

Meadows & Freitas, ArXiv: 2205.15231 (2022).

The Unreasonable Effectiveness of Large Language Models (LLMs)

Language Models

Probability distributions over strings of text.

The students opened their ... The students opened their <u>books</u> (predicted)

S = The students opened their books

P(S) = P(The) x P(students | The) x P(opened | The students) x P(their | The students opened) x P(books | The students opened their)

Neural Language Models

Kapronczay, Towards Data Science (2021)

Transformers

Positional Encodings
 (Multi-head) Self-Attention

Vaswani et al, NeurIPS (2017)

Attention

The agreement on the European Economic Area was signed in August 1992.

L'accord sur la zone économique européenne a été signé en août 1992.

Vaswani et al, NeurIPS (2017)

Self-Attention

Self-attention allows a a model to assign a meaning to a term in a complex context .

Vaswani et al, NeurIPS (2017)

BERT: Bidirectional Encoder Representations from Transformers

Self-attention allows a a model to assign a meaning to a term in a complex context.

Devlin, Chang, Lee, Toutanova, CoRR (2018)

Transformers as Soft Reasoners

(Input Facts:) Alan is blue. Alan is rough. Alan is young. Bob is big. Bob is round.
Charlie is big. Charlie is blue. Charlie is green.
Dave is green. Dave is rough.
(Input Rules:) Big people are rough.
If someone is young and round then they are kind.
If someone is round and big then they are blue.
All rough people are green.

Q1: Bob is green. True/false? [Answer: T]Q2: Bob is kind. True/false? [F]Q3: Dave is blue. True/false? [F]

Clark, Tafjord, Richardson, IJCAI (2020)

SBERT

Cross-encoders: perform full-attention over the input pair. **Bi-encoders:** map each input independently to a dense vector space.

Reimers & Gurevych, EMNLP (2019)

MathBERT

Pre-trained on Arxiv bulk data (Amazon S3)

MLM: Masked Language Modeling CCP: Context Correspondence Prediction MSP: Masked Substructure Prediction

Peng, Yuan, Gao, Tang, ArXiv:2105.00377 (2021)

LLMs are few-shot learners

• 'In-context' learning.

- Text input of a LLM as a form of task specification.
- Natural language instruction and
- a few demonstrations of the task
- model expected to complete further instances of the task.

• Controlling generation.

Set an arbitrary prefix (the prompt) as a control mechanism.

Brown et al., Arxiv:2005.14165 (2020)

Brown et al., Arxiv:2005.14165 (2020)

LLMs are few-shot learners

Brown et al., Arxiv:2005.14165 (2020)

Autoformalisation

Automatically translating from natural language mathematics to a formal language.

Case Study 1 Question:

"Prove that there is no function f from the set of non-negative integers into itself such that f(f(n)) = n + 1987 for every n."

Codex Output:

theorem

```
fixes f :: "nat \<Rightarrow> nat"
```

```
assumes "<forall>n.f(fn) = n + 1987"
```

shows False

Wu et al., Arxiv:2205.12615 (2022)

Informalisation

Automatically translating from natural language mathematics to a formal language.

lemma seteqI: " $[[\land x. x \in A \implies x \in B; \land x \in B \implies x \in A]]$ $\implies A = B"$ Translate the Isabelle version to a natural language

version:

Codex Output: "If A and B are sets such that $A \subseteq B$ and $B \subseteq A$, then A = B."

```
lemma topologyI:
 "[ \land x y. [ is_open T x; is_open T y]] \implies
 is_open T (x \cap y);
 \land M. \forall m \in M. is_open T m \implies
 is_open T (\bigcup M)
 ]] \implies topology T"
```

Translate the Isabelle version to a natural language version:

Codex Output:

"If T is a set and T is closed under finite intersections and arbitrary unions, then T is a topology."

Wu et al., Arxiv:2205.12615 (2022)

MiniF2F

• MiniF2F dataset containing 488 mathematical competition statements manually formalized.

		Test Set	Validation Set	
-	TOTAL	244	244	
	IMO		20	20
	AIME		15	15
	AMC		45	45
		Level 5	14	14
		Level 4	14	14
	Algebra	Level 3	14	14
		Level 2	14	14
MATH		Level 1	14	14
		Level 5	16	16
		Level 4	11	11
	Number Theory	Level 3	11	11
		Level 2	11	11
		Level 1	11	11
5.	Algebra	Algebra		18
CUSTOM	Number The	eory	8	8
	Induction	1	8	8

Zheng et al., Arxiv:2109.00110 (2021)

https://github.com/openai/miniF2F

Autoformalisation

 LLMs can correctly translate 25.3% of mathematical competition problems to formal specifications in Isabelle/HOL.

		miniF2F-valid			_	1	niniF2F-te	st
Formal Model		Proof	Pass rate		-	Proof	Pass rate	
System	Model	Length	Pass@1	Pass@8	_	Length	Pass@1	Pass@8
Metamath	$\operatorname{GPT-} f$	16.2	1.0%	2.0%	-	20.3	1.3%	1.6%
Lean	tidy	1.7	16.8%	-		1.8	18.0%	-
Lean	$\operatorname{GPT-} f$	2.6	23.9%	29.3%		2.5	24.6%	29.2%

Zheng et al., Arxiv:2109.00110 (2021)

https://github.com/openai/miniF2F

LLMs trained on code

```
def incr_list(l: list):
    """Return list with elements incremented by 1.
    >>> incr_list([1, 2, 3])
    [2, 3, 4]
    >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
    [6, 4, 6, 3, 4, 4, 10, 1, 124]
    """
    return [i + 1 for i in l]
```

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.
    Examples
    solution([5, 8, 7, 1]) =⇒12
    solution([3, 3, 3, 3, 3]) =⇒9
    solution([30, 13, 24, 321]) =⇒0
    """
    return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```

Chen et al., Arxiv:2107.03374 (2021)

LLMs trained on code

Chen et al., Arxiv:2107.03374 (2021)

Encoding Inference:

Semantic & Inference Controls

Typing & Discourse-level

We wish to find a function f which satisfies the boundary conditions f(a) = A, f(b) = B, and which extremizes the functional:

$$\longrightarrow$$
 $J = \int_a^b F(x, f(x), f'(x)) \, \mathrm{d}x$.

Work	Task	Learning	Approach	Dataset		
Identifier-Definition Extraction						
Kristianto et al. (2012)	Expression-definition	S	CRF with linguistic pattern features	LaTeX papers		
Kristianto et al. (2014a)	Expression-definition	S	SVM with linguistic pattern features	LaTeX papers		
Pagael and Schubotz (2014)	Identifier-definition	R	Gaussian heuristic ranking	Wikipedia articles		
Schubotz et al. (2016a)	Identifier-definition	UNS	Gaussian ranking + K-means namespace clusters	NTCIR-11 Math Wikipedia		
Schubotz et al. (2017)	Identifier-definition	S	G. rank + pattern matching + SVM	NTCIR-11 Math Wikipedia		
Stathopoulos et al. (2018)	Variable Typing	S	Link prediction with BiLSTM	arXiv papers		
Alexeeva et al. (2020)	Identifier-definition	R	Odin grammar	MathAlign-Eval		
Jo et al. (2021)	Notation auto-suggestion and consistency checking	S	BERT fine-tuning	S2ORC		

Conjecture	Premise	Predicted	Label
Let $T = (S, \tau)$ be a topological space. Let A, B be subsets of S . Then: $\partial(A \cap B) \subseteq \partial A \cup \partial B$ where ∂A denotes the boundary of A .	Let S, T_1, T_2 be sets such that T_1, T_2 are both subsets of S . Then, using the notation of the relative complement: $ST_1 \cap T_2 = ST_1 \cup ST_2$	1	1
$\int \frac{\dot{X}}{x(x^2 - a^2)} = \frac{1}{2a^2}, \ln \frac{x^2 - a^2}{x^2} + C$ for $x^2 > a^2$.	$\int \frac{dx}{x} = \ln x + C$ for $x \neq 0$.	1	1
Let $T = S, \tau$ be a compact space. Then T is countably compact.	Let $T = (S, \tau_{a,b})$ be a modified Fort space. Then T is not a T_3 space, T_4 space or T_5 space.	1	0

	Data Split				
Statement type	KB	Train	Dev	Test	All (Unique)
Definitions	7,077	0	0	0	7,077
Lemmas	252	134	70	69	252
Corollaries	161	113	57	57	275
Theorems	8,715	5,272	2,652	2,636	14,003
Total	16,205	5,519	2,778	2,763	21,746

Ferreira & Freitas, LREC (2020)

	Val			Test		
	F1	Р	R	F1	Р	R
BERT	.886	.871	.901	.877	.925	.834
MathSum	.644	.512	.869	.459	.562	.388
Self-attention + BiLSTM	.651	.550	.796	.631	.573	.703
STAR	.885	.854	.917	.882	.865	.899

Ferreira & Freitas, EACL (2021)

Ferreira & Freitas, ACL (2020)

Discourse-level

1

2

2

Sentence Position (SP)

This is the differential equations formulation of Gauss equation up to a trivial rearrangement.

According to the (purely mathematical) Gauss divergence theorem, the electric flux through the boundary surface $\partial \Omega$ can be rewritten as

$$\oint_{\partial\Omega} \mathbf{E} \cdot \mathrm{d}\mathbf{S} = \iiint_{\Omega} \nabla \cdot \mathbf{E} \mathrm{d}V$$

The integral version of Gauss's equation can thus be rewritten as

$$\iiint_{\Omega} \left(\nabla \cdot \mathbf{E} - \frac{\rho}{\varepsilon_0} \right) \mathrm{d}V = 0$$

Since Ω is arbitrary (e.g. an arbitrary small ball with arbitrary center), this is satisfied if and only if the integrand is zero everywhere. 3

Binary Sentence Ordering (BSO)

The integral version of Gauss's equation can thus be rewritten as

$$\iiint_{\Omega} \left(\nabla \cdot \mathbf{E} - \frac{\rho}{\varepsilon_0} \right) \mathrm{d}V = 0$$

According to the (purely mathematical) Gauss divergence theorem, the electric flux through the boundary surface $\partial \Omega$ can be rewritten as

$$\iint_{\partial\Omega} \mathbf{E} \cdot \mathrm{d}\mathbf{S} = \iiint_{\Omega} \nabla \cdot \mathbf{E} \mathrm{d}V$$

Discourse Coherence (DC)

According to the (purely mathematical) Gauss divergence theorem, the electric flux through the boundary surface $\partial \Omega$ can be rewritten as

$$\iint_{\partial\Omega} \mathbf{E} \cdot \mathrm{d}\mathbf{S} = \iiint_{\Omega} \nabla \cdot \mathbf{E} \mathrm{d}V$$

The integral version of Gauss's equation can thus be rewritten as

$$\iint_{\Omega} \left(\nabla \cdot \mathbf{E} - \frac{\rho}{\varepsilon_0} \right) \mathrm{d}V = 0$$

2

For that reason, it is called the heat equation in mathematics, even though it applies to many other physical quantities besides temperature. 3

This is the differential equations formulation of Gauss equation up to a trivial rearrangement. 4

Sentence Section Prediction (SSP)

Meadows, Zhou, Freitas, LREC 2022.

Discourse-level

Dataset	Size	% with math	% with equations
DC	35 k	45	35
SP	40 k	36	29
BSO	459 k	24	17
SSP	90 k	12	7

Wikipedia category

Meadows, Zhou, Freitas, LREC 2022.

Symbolic Gap

| ·

We can repeat this for momentum by interpreting the function $\tilde{g}(p) = p \cdot \varphi(p)$ as a vector, but we can also take advantage of the fact that $\psi(x)$ and $\varphi(p)$ are Fourier transforms of each other. We evaluate the inverse Fourier transform through integration by parts:

$$g(x) = \frac{1}{\sqrt{2\pi\hbar}} \cdot \int_{-\infty}^{\infty} \tilde{g}(p) \cdot e^{ipx/\hbar} dp$$

$$= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} p \cdot \varphi(p) \cdot e^{ipx/\hbar} dp$$

$$= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \left[p \cdot \int_{-\infty}^{\infty} \psi(\chi) e^{-ip\chi/\hbar} d\chi \right] \cdot e^{ipx/\hbar} dp$$

$$= \frac{i}{2\pi} \int_{-\infty}^{\infty} \left[\frac{\psi(\chi) e^{-ip\chi/\hbar}}{-\infty} - \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} e^{-ip\chi/\hbar} d\chi \right]$$

$$= \frac{-i}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} e^{-ip\chi/\hbar} d\chi e^{ipx/\hbar} dp$$

$$= \left(-i\hbar \frac{d}{dx} \right) \cdot \psi(x),$$

$$g(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \tilde{g}(p) \cdot e^{\frac{ipx}{\hbar}} dp$$

$$\tilde{g}(p) = p \cdot \varphi(p)$$

$$g(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} p \cdot \varphi(p) \cdot e^{\frac{ipx}{\hbar}} dp$$

$$\varphi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \varphi(\chi) \cdot e^{\frac{-ip\chi}{\hbar}} d\chi$$

$$g(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} p \cdot \left(\frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \varphi(\chi) \cdot e^{\frac{-ip\chi}{\hbar}} d\chi\right) \cdot e^{\frac{ipx}{\hbar}} dp$$

$$g(x) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} p \cdot \left(\int_{-\infty}^{\infty} \varphi(\chi) \cdot e^{\frac{-ip\chi}{\hbar}} d\chi\right) \cdot e^{\frac{ipx}{\hbar}} dp$$

Proof, Explanation & Natural Language Inference

H: <u>Shale</u> is a <u>sedimentary rock</u> that can be metamorphosed into <u>slate</u> by <u>increased pressure</u>.

'exposure to <u>extreme</u> heat and <u>pressure</u> changes <u>sedimentary</u> and igneous <u>rock</u> into <u>metamorphic rock</u>'

Abstraction, grounding

Abstraction

Proof, Explanation & Natural Language Inference

H: <u>Shale</u> is a <u>sedimentary rock</u> that can be metamorphosed into <u>slate</u> by <u>increased pressure</u>.

'shale is a kind of sedimentary rock'

'high is similar to increase'

'slate is a type of metamorphic rock'

'exposure to <u>extreme</u> heat and <u>pressure</u> changes <u>sedimentary</u> and igneous <u>rock</u> into <u>metamorphic rock</u>'

Unification

Abstraction

Controlling NLI

Sentence embeddings for approximate premise selection (kNN query - scalable).

Add constraints which define an explanation.

Constructs a fact graph where each node is a fact with explicit attributes.

Define properties which we can optimise: e.g. **relevance**, **saturation** and **diversity**.

Thayaparan et al, TACL (2022)

Valentino, Thayaparan, Ferreira, Freitas, AAAI (2022)

Valentino, Thayaparan, Freitas, EACL (2021)

Thayaparan & Freitas, ACL Findings (2021)

Controlling NLI

An end-to-end differentiable framework that incorporates constraints via convex optimization layers into broader transformers-based architectures.

Semantic and lexical scores are weighted by a set of learnable θ parameters to construct an explanation graph G = (V, E) supporting the candidate answer.

Thayaparan et al, TACL (2022)

red: ExplanationLP + UR blue: BERT_{Large} + UR green: PathNet + UR

Thayaparan & Freitas, ACL Findings (2021)

Conclusions

- LLMs have demonstrated the capability of synthesising code from NL in a few-shot setting.
- NLI have been complementing LLMs models with additional semantic and inference controls.
- Nothing specific here for NL: applicable to other types of language.
- Strategic (cross-disciplinary) space for WG4:
 - What are the efficiency gains of LLMs and NLI in the construction of proof libraries?
- Because this group is closer to the resources (libraries), I believe we are at a unique position to answer this question.

Questions, Collaborations?

andre.freitas@manchester.ac.uk