Experiences from Exporting Proof Assistant
Libraries

Michael Kohlhase, Florian Rabe

September 2022

Background

Background

Background
Our Proof Assistant Projects
OMDoc 2000-

» machine-oriented content representation language
» joint platform for MMT/LATIN content and OAF exports

MMT 2006—
» platform for building logical frameworks

» knowledge management infrastructure

LATIN 2008-2012, redesign 2020—

» uses MMT/LF to formalize “all” logical systems
» highly modular network of theories

OAF 2014-2020 and ongoing

» export proof assistant libraries relative to logic definitions in LATIN
focus of this talk

» use for library integration

VWhat we thought we were gonna do

What we thought we were gonna do

VWhat we thought we were gonna do

Project Goals

Represent language of system S
» specification of syntax, semantics of S-logic
» represents all built-in/logical symbols —, 'V, etc.
» manual in MMT using logical framework F

Export libraries of S

» port of libraries from S to MMT/F/S

» represents all user-defined /non-logical symbols
definitions, theorems, etc.

» automated by instrumenting S
Coq, HOL Light, IMPS, lIsabelle, Mizar, PVS

Integrate libraries
» now many systems and libraries in F
» systematically build system translations verifiable by F
» generic tool support via MMT/F proof checking, search, ...

VWhat we thought we were gonna do

Overview of OAF Libraries

MMT

N

LFX LF Isabelle/Pure

AR

PVS Cog HOLL.IMPS Mizar HOL ZF

R T T T U

NASA Prelude (> 200) std lib IMPS MML AFP

VWhat we thought we were gonna do

Example: HOL Light Language

One declaration per primitive concept, logical symbol, rule

theory HOLLight : LF =
holtype : type

term : holtype — type

thm . term bool — type

bool : holtype

fun . holtype — holtype — holtype

Abs . {A,B} (term A — term B) — term (A = B)
Comb : {A,B} term (A = B) — term A — term B
equal . {A} term A = (A = bool)

REFL {AX:term A} F X =X

TRANS {AX,Y,Z:term A}

I—X—Y—>}—Y—Z—>}—X—Z

MMT provides notation-based parsing, type reconstruction etc.

VWhat we thought we were gonna do

Example: HOL Light Library

Represent every statement in library as OMDoc XML, e.g.,
> HOLLight: PRE: num -> num in HOLLight
» MMT/LF: PRE: term (fun num num)
» OMDoc XML:

<constant name="PRE">
<type>
<OMA>
<OMS module="LF" name="apply" />
<OMS module="HOLLight” name="term"” />
<OMA>
<OMS module="LF" name="apply" />
<OMS module="HOLLight” name="fun" />
<OMS module="nums” name="num” />
<OMS module="nums” name="num"” />
< /OMA>
< /OMA>
</type>
</constant>

VWhat we thought we were gonna do

Example: HOL Light Services

ORALL DEF showthide type show/hide tags show/hide metadata
type {A:holtype} F (1A)= 2 P:A=>bool .P= kAT
— type

¢ R reconstructed types

implicit arguments ’
@X[STS_DEF show

redundant brackets 3
\.’ show/hide type :

infer type (-
[OR_DEF show/hide N

= simplify

show/hide type fold
type bool J

(A = bool) = bool

TR T

VVhat we thought we were gonna do

Example: HOL Light Services

[Enter Java regular expressions to filter based on the URI of a declaration
Namespace |

Theory |

Name |

[Enter an expression over theory |http:ﬁcode.google_comfp!hDI—\ightfsourcefbrowseftrunl
$x,y,p: x MOD p =y MOD p
Use $x.y,z:query to enter unification variables.

type of MOD_EQ

B ¥menum. Ya:num, YVp:inum . Yg:num.m = n+ ¢+ p— mMODp = n MOD p
type of MOD_MULT_ADD
F Vmcnum. Ve:num, Vpinum . (m=a+ p) MOD g = pMOD &

What we thought we were gonna do

Logic Translations

Most natural approach
> represent systems S, T in framework F
» formal translation S — T in F
» induces library translation

Evaluation
» perfect in theory
> works great for textbook logics FOL, HOL, etc.

» rarely works for practical proof assistant logics
at best from simple to complex logics

Issues
» non-compositional translations it's hard
» library integration problem and it misses the point

» incompatible types
» incompatible definitions
» incompatible subtyping

VVhat we thought we were gonna do
Issue: Non-compositional Feature Translation

Often features not directly expressible in target logic, e.g.,
» undecidable subtying of PVS

soft types of Mizar

partial functions of IMPS

extensible records of PVS

types non-empty of HOL, Mizar

booleans+propositions of Coq

universes of Coq, universes of Mizar

VVYvYyVvVYVYYVYY

theory inclusions of PVS

Non-compositional translations needed, which are often

» difficult/erroneous often open research problems
» brittle easily broken when system changes
» non-modular may be broken in the presence of other features

» partial fail on some rarely-used features

What we thought we were gonna do

Issue: Library Integration Problem

Problem
» logic translation S — T induces library translation

» but yields copy of S-library that is unrelated to T-library
T-library already contains definitions of some S-concepts

Alignments
» alignment = pair of S and T-symbol formalizing the same concept
» translation should respect alignments
» almost never the case out of the box maybe not even for booleans

Note: Many “translations” in the literature are actually deep
embeddings. These, by design, translate nothing to its
counterpart, not even types or propositions.

VVhat we thought we were gonna do

Issue: Incompatible Types
aligned symbols may have different types, e.g.,

division by 0
» div : num — num — num total function with default value
» div : num — num < num partial function
» div: num — {y : numly # 0} — num predicate subtype
» div: num — (y : num) =+ y # 0 — num guard argument

semigroup on (S, o, Assoc)

» theory SG{S, o, Assoc, ...} plain theory
» theory SG(S) {0, Assoc, ...} carrier as parameter
» theory SG(S, circ, Assoc){...} all primitives as parameter
» theory Magma{S,circ, ...}, predicate Assoc : Magma — bool

axioms as separate predicate (needed with non-dependent records)
orthogonal choice: records vs. theories
orthogonal choice: extra parameter for universe of S

VVhat we thought we were gonna do

Issue: Incompatible Definitions

aligned symbols may have different definitions, e.g.,
often equivalent, but equivalence undecidable

The order a < b in a lattice
» primitive, axiomatized
> afb=a
> allb=0>b

The type of real numbers
» axiomatic theory
» Dedekind cuts, Cauchy sequences, ...

» intervals, computable reals

What we thought we were gonna do

Issue: Incompatible Subtyping

alignments might not respect subtyping, e.g.,

number hierarchy N, Z, Q, R, C
» subsets, e.g., Mizar
» subtypes, e.g., in PVS
» separate types, e.g., HOL Light
» subsets on a type, e.g., HOL

algebraic hierarchy Magma, Semigroup, Monoid, ...
» theories and inclusions, e.g., Isabelle, PVS
» extensible records with record subtyping, e.g., PVS
» separate records with forgetful functors, e.g., Coq

VVhat we thought we were gonna do
Library-Level Translations via Alignments

ldea
» logic translations alone not enough

» better: library translation via alignments needed

with enough alignments, logic translation somewhat optional

Problem: Alignments get complex see issues above
» employ non-trivial inference, heuristics
e.g., infer the non-zero proof for ternary division

P use alignments to get rough translation, then use target system to
try to fill in gaps
maybe machine learning/fuzzy parsers to fix minor syntax issues?

Problem: Managing large number of alignments
» manual or machine learning?
» star-shaped or system-pairwise?

» annotate inside libraries or in separate alignment database?

VVhat we thought we were gonna do
Library Integration via Interface Theories

Idea

» direct translations S — T often complex, difficult
with or without alignments

> better (?): use axiomatic interface theories in the logical framework

» Spec: interface theory e.g., Peano axioms, order, group
» Impl;: implementation of Spec in system |

e.g., built-in, inductive type, subtype of R, ...
» 1 theory morphism witnessing how Spec is realized
> p;: partial inverse of u;

- --- Imply
\Z
Spec

VVhat we thought we were gonna do

Interface Theories: Pros and Cons

Appeal of interface theories
» abstract away prover/library idiosyncrasies
forces integration-friendly definitions

» easy to write for non-experts
most prover complexity only needed for doing proofs

» flexible choice of weakest possible logic typed FOL+X often enough

Challenges
» prover-independent library of interfaces needed
big effort in addition to existing libraries
» coordinated community effort needed

» maybe contrary to recent trends in DTT-ITPs
smart type system to interpret user input

VWhat we ended up doing

What we ended up doing

VWhat we ended up doing

Exports are hard

Only little work on library integration done

VWhat we ended up doing

Exports are hard

> many time-consuming issues
conceptual, logical, implementation, scalability, maintenance

Only little work on library integration done

VWhat we ended up doing

Exports are hard

> many time-consuming issues
conceptual, logical, implementation, scalability, maintenance
P intense collaboration with system experts necessary, e.g.,
» Sacerdoti Coen’s Coq XML export plugin separate paper
» Wenzel subcontracted for 6-12 months to write Isabelle export
MMT export now part of Isabelle release
» Owre made numerous extensions to PVS on our request
» Mizar completely redesigned XML export, partially with our
feedback

Only little work on library integration done

VWhat we ended up doing

Exports are hard

> many time-consuming issues
conceptual, logical, implementation, scalability, maintenance
P intense collaboration with system experts necessary, e.g.,

» Sacerdoti Coen’s Coq XML export plugin separate paper
» Wenzel subcontracted for 6-12 months to write Isabelle export
MMT export now part of Isabelle release
» Owre made numerous extensions to PVS on our request
» Mizar completely redesigned XML export, partially with our
feedback

> in fact, we stretched the project from 3 years to 6 years to get
better exports

Only little work on library integration done

VWhat we ended up doing
Exports are big

Language Libraries Modules Decl.'s RDF triples
PVS Prelude+NASA 1k 25k
Isabelle distrib.+AFP 12k 2M 40M
HOL Light Basic 200 20k
Coq > 50 2k 200k 12M
Mizar MML 1k 70k

VWhat we ended up doing
Conceptual Issues

Elaboration

» high-level structure visible to users much better for integration

» elaborated into low-level kernel structure
often the only thing that can be exported

» |sabelle inductive types, Coq sections, Mizar definitions, ...
disconnect can be massive but barely traced in tools

Handling of Abstract Theories
» aligning abstract theories critical for library integration
ideal for working with interface theories

» vast diversity of language features and library conventions
see above, very hard to bridge

Library compatibility
» delayed adaptation to new tool versions

» libraries of the same tool incompatible with each other
e.g., Coq universe inference for TYPE

VWhat we ended up doing

Logical Issues

Off-the-Shelf Logical Frameworks often not strong enough
» subtyping, quotient typing
» partial functions, undefinedness
» pattern-matching

» rewriting, computation as part of type system

Features that introduce names
» inductive types
» record types

Idiosyncratic module systems
» inferred type parameters in Isabelle locales
» imperative treatment of Coq sections
» undecidable set of identifiers in PVS includes

We designed and used extensions of LF with varying success.

VWhat we ended up doing

Implementation issues

Tool internals complex
» often only understandable by system expert

» kernel hooks or kernel-generated files or export framework

Advanced logic features

P> experimental ongoing research, but used somewhere in library

» no or little documentation reverse engineering not unusual

Inaccessible data
» elaboration data: high-level structure, relation to kernel structure
» comments

» source references: kernel data structures must link to source location

VWhat we ended up doing

Scalability issues

Exports are big
» OMDoc on disk must be compressed

» internal structure sharing not alway exportable
e.g., non-semantic sharing in Coq

» HTML presentation must be pre-generated

Nice LF representations are even bigger
» Coq representation in LF only via untyped term language
apply : term — term — term

P typed representation explodes export size
apply : Ma pg.term A — term B — term (A = B)

Proof terms are even bigger
» some generated proofs cause export time outs

» especially bad in provers without built-in computation
such as Isabelle rewriting (as opposed to Coq computation)

» dependency-only proofs in our exports

VWhat we ended up doing
Maintenance issues

Human resources
» needed: coordinator+system expert+export implementer

» 2 weeks initial meeting+months of asynchronous work

Incentivization
» very challenging theoretically
» very labor-intensive
» but barely publishable

Decay

» export code decays
system expert busy
implementers move on

language/tool changes

vVvyyy

tool improves in a way that deprecates export

Mizar: reimplemented from scratch after 10 years

VWhat we think should be done going torward

What we think should be done going forward

VWhat we think should be done going torward

Best Practice for an Export

Near the prover implemented by system expert

» push button export of internal data structures all types inferred, etc.
» ad hoc XML schema or similar

» actively maintained by tool developers

documentation of XML schema as interface

Near MMT implemented by us

» reads tool-near export
» uses MMT to generate OMDoc

» minor compositional translation to standardize abstract syntax
no standardization of semantics

much improvement recently, e.g., Isabelle, Mizar, PVS

VWhat we think should be done going torward
Proof Assistant Design

Embrace tool-near exports
» documented XML (or JSON or other) schema
P co-release exports with libraries

» re-read, re-check export needed for testing

Design export-anticipating internal data structures
» source references

P pre- and post-elaboration structure, interconnected

Support integration-anticipating formalization
» abstract theories wherever possible
records good for proving, bad for integration

P allow restricting logical strength
formalize every theory in the weakest possible sublogic

» allow hiding the underlying logic as much as possible
avoid heavy use of type system in basic definitions

VWhat we think should be done going torward

High-Level Proof Interchange Language

Language
» Isar-like but not logic/tool-specific

» close to proof in math paper but with enough data to generate
stubs for every prover

Prover integration

» every prover exports high-level proofs relatively easy to do

» every prover tries to read high-level proofs
use alignment-based translation
heuristically fill gaps

Realization
» community commitment needed

» but very much in reach with little effort

VWhat we think should be done going torward

Interface Theory Library

Proposal

» Community effort to build large library of interface theories

» Every prover community maintains alignments to their prover

Big challenge but

» QED Manifesto still applies — this would be a much easier goal
» similar to what FormalAbstracts already started building
» potential for major impact on wider scientific community
similar to what TPTP did for ATPs

	Background
	Our Proof Assistant Projects

	What we thought we were gonna do
	Project Goals
	Overview of OAF Libraries
	Example: HOL Light Language
	Example: HOL Light Library
	Example: HOL Light Services
	Example: HOL Light Services
	Logic Translations
	Issue: Non-compositional Feature Translation
	Issue: Library Integration Problem
	Issue: Incompatible Types
	Issue: Incompatible Definitions
	Issue: Incompatible Subtyping
	Library-Level Translations via Alignments
	Library Integration via Interface Theories
	Interface Theories: Pros and Cons

	What we ended up doing
	Exports are hard
	Exports are hard
	Exports are hard
	Exports are hard
	Exports are big
	Conceptual Issues
	Logical Issues
	Implementation issues
	Scalability issues
	Maintenance issues

	What we think should be done going forward
	Best Practice for an Export
	Proof Assistant Design
	High-Level Proof Interchange Language
	Interface Theory Library

