Concrete Problems
in Proof Automation

Talia Ringer
UIUC (currently also visiting at Google)

The long version of this
talk from AITP 2022
Is on my YouTube!

Al for Proofs
Renaissance

Al for Proofs

Proofs Al

It's pretty It's hard

Programs are It's grounded
terrible and

everything is “AGI"
always broken

o Weird bets
Imagine if we over what Al
could trust can do by

literally anything 202X Or 203X

Al for Proofs

Proofs Al

It's pretty It's hard

Programs are
terrible and

It's grounded

It's useful

everything is and a fun “AGI"
always broken
o challenge Weird bets
Imagine if we over what Al
could trust can do by

literally anything 202X Or 203X

Most Al for proofs:
1. tactic prediction,
2. synthesis,
3. autoformalization,
4. premise selection, and
5. concept alignment.

Don't stop doing:
1. tactic prediction,
2. synthesis,
3. autoformalization,
4. premise selection, and
5. concept alignment.
But ...

Do lots more:
1. conjecture testing,
2. lemma discovery,
3. relation discovery,
4. proof reuse & repair, and
5. semantic search.
You won' regret it!

Do lots more:
1. conjecture testing

You won't regret it!

Myth

Proof Engineer Proof Assistant

Program !-
Spedﬁcation
> |’

Conjecture Testing (Task 1 of 5)

Myth

Proof Engineer Proof Assistant

Program !-

Specification
s,

=

Conjecture Testing (Task 1 of 5)

Myth

Proof Engineer Proof Assistant

Program !-
Specification !-

=

=

Conjecture Testing (Task 1 of 5)

Myth

Proof Engineer Proof Assistant

Program !-
g >
Spedﬁcation
> |’

Conjecture Testing (Task 1 of 5)

Reality

Proof Engineer Proof Assistant

Program !-
g >
Spedﬁcation
> |’

Conjecture Testing (Task 1 of 5)

Reality

Proof Engineer Proof Assistant

Program !-

Conjecture Testing (Task 1 of 5)

Reality

Proof Engineer Proof Assistant

757%

of the time!

Conjecture Testing (Task 1 of 5)

It's Hard

Experts Proof Assistant

Program !-

Conjecture Testing (Task 1 of 5)

It's Hard

Students Proof Assistant

Program !-

Conjecture Testing (Task 1 of 5)

It's Hard

Students

Proof Assistant

Conjecture Testing (Task 1 of 5)

It's Hard

Prediction Models Proof Assistant

Conjecture Testing (Task 1 of 5)

The death loop
Is a symptom of
gaming proofs.

Conjecture Testing (Task 1 of 5) .

What Experts Do

Experts Proof Assistant

Conjecture Testing (Task 1 of 5)

What Experts Do

Experts Proof Assistant

Program

- And strong too?]
- SpeC|ﬁcatlon

Conjecture Testing (Task 1 of 5)

What Experts Do

Experts Proof Assistant

Program

J
SpeC|ﬁcatlon !
o 5@

Conjecture Testing (Task 1 of 5)

What Experts Do

Experts Proof Assistant

Conjecture Testing (Task 1 of 5)

What Experts Do

Experts Proof Assistant

Program
’-!
It's the proof.
. [J
Specification
|

Conjecture Testing (Task 1 of 5)

Good automation ought to
answer these questions.

Conjecture Testing (Task 1 of 5) .

What's Hard

Static proof data mostly
contains true conjectures,
plus getting symbolic tools
to play nicely with ML is
hard but needed.

Conjecture Testing (Task 1 of 5) .

Ideas @

More granular data via
iInstrumentation, capturing
the development process?

Conjecture Testing (Task 1 of 5) .

Ideas @

Synthetic data with
false propositions?

Conjecture Testing (Task 1 of 5) .

Ideas @

Combine ML with or train for
property-based testing or
counterexample generation?

Conjecture Testing (Task 1 of 5) ,

Ideas @

Your ideas herel

Conjecture Testing (Task 1 of 5) .

What Experts Do

Experts Proof Assistant

Program

J
SpeC|ﬁcatlon !
o 5@

Conjecture Testing (Task 1 of 5)

What Experts Do

Experts Proof Assistant
Program -
]
[J
Al Specification
p ’

Conjecture Testing (Task 1 of 5)

Do lots more:

2. lemma discovery

You won't regret it!

Not Just Useful—Essential

Experts Proof Assistant
Program -
]
[J
Al Specification
p ’

Lemma Discovery (Task 2 of 5)

Not Just Useful—Essential

Experts Proof Assistant

Program
| need a more
general lemma.

Specification
’

Lemma Discovery (Task 2 of 5)

Not Just Useful—Essential

It should
mirror the
program.

Lemma Discovery (Task 2 of 5)

Not Just Useful—Essential

It should
mirror the
program.

Specification
’

Lemma Discovery (Task 2 of 5)

Not Just Useful—Essential

Experts Proof Assistant
Recursive

Helper
Helper lemmas for
helper functions! /
Inductive
Helper

Lemma Discovery (Task 2 of 5)

It's Hard

Experts Proof Assich

Program

4

Theorem

Lemma Discovery (Task 2 of 5)

File Edit View Nawvigat emplat Querie) npile W ws Help ‘—1' /
. « D
E2E0J4 VT 4 @ <) P
Oracticsv \ k\
length (rev alt 1) = length 1. 1 goal g
Proof. A : Tyg
induction 1; simpl; auto. a:A
simpl. unfold rev alt. rewrite rev_aux pres length. simpl. 1: list A
auto with arith. IHL : forall a : A, rev aux | [a] = app (rev_ aux 1 []) [a]
Qed. a0 : A
(1/1)
Lemma whatever {A : Type}: rev aux | [a; a0] = app (rev aux 1 [a]) |a®

forall (1 : list A) (a : A),
rev aux L [a] = app (rev_aux 1 []) [a].

Proof.
induction 1; auto; intros.
simpl in *.

rev aux 1 [a] = app (rev_aux 1 []) [a]
Messages

Lemma rev rev alt {A : Type}:
forall (1 : list A),
rev alt 1 = rev 1.
Proof.
intros 1. induction 1; auto.
simpl. unfold rev_alt. simpl.
rewrite <- IHL. unfold rev_ alt.

Search app.
Print app.

simpl. unfold rev aux.
simpl.

* That's it for now! You can keep playing with other proofs if you have
tra time. For example, it might be fun to define your own inductive types,
* like a binary tree, and then write proofs about those types.

* If you have a lot of extra time, I recommend looking at the

* Coq source code on Github to get a sense for how it's implemented:
* https://github,com/cog/coq. In any case, when we have 25 minutes

* left of class, please do this:

F S T YT Ty [v LTS T T v v ey

4 P Pl) 1927/4516

Proof Sesh 1: a taste of my own medicine

211 views « Feb 3,2022 e 16 GJ DISLIKE 2> SHARE =+ SAVE ...

Roirsvisecr —_

Oractics.y
Qed. 1 goal —
A : Type
Theorem rev_pres_length alt {A : Type): a:A
forall (1 : list A), 1: listA
length (rev_alt 1) = length 1. IHL : forall a : A, 1 ++ [a] = rev_aux (rev_aux 1 []) [a]
Proof. a0 : A
induction 1; simpl; auto. (1/1)
simpl. unfold rev alt. rewrite rev aux pres length. simpl. a :: rev aux (rev aux 1 []) [a®] = rev aux (rev aux 1 [a]) |la®)
auto with arith.
Qed.

Lemma app whatever {A : Type}:
forall (1 : list A) (a : A),
1 ++ [a] = rev aux (rev_aux 1 []) [a].
Proof.
induction 1; intros; auto.

3 o 4 Messages
simpl in *. rewrite IHL.

Eval compute in (rev_aux (rev_aux (1; 2; 3; 4] []) [5))

Lemma whatever {A : Type}:

forall (1 : list A) (a : A),

rev aux 1 [a) = app (rev_aux 1 []) [a].

Proof.

intros 1 a. rewrite app OK.

Search List.app.

simpl.

induction 1; auto; intros.

simpl. rewrite app_ rewrite IHL. simpl.

rev_aux | [a] = app (rev_aux 1 []) [a]

Lemma rev_rev alt {A : Type}:
forall (1 : list A),
rev alt 1 = rev 1.
Proof.
intros 1. induction 1; auto.

:;:g}e;n:},;;, L just one that is hard to prove still

L — 8

4 P Pl) 2738/4516 «“Q ¢ & O] 03

Proof Sesh 1: a taste of my own medicine

211 views - Feb 3,202 e 16 GJ DISLIKE 2> SHARE =+ SAVE ...

BOLTITA%O0C)

Oracticsy

Theorem rev_pres length alt {A : Type}:
forall (1 : list A),
length (rev_alt 1) = length 1.
Proof.
induction 1; simpl; auto.
simpl. unfold rev alt. rewrite rev_aux pres length. simpl.
auto with arith.
Qed.

» rev aux cons {A : Type}:
rall (11 12 : list A) (a : A),
rev_aux 11 12 = rev_aux (11 ++ [a]) 12.

f

Proof
induction 11; auto.
intros. simpl in *. rewrite IHll. auto. Messages
Qed
2 rev_rev_alt (A : Type):
forall (1 : list A),
revalt L = rev 1,
Proof.

intros 1. unfold rev_alt.

intros 1. induction 1; auto.

simpl. unfold rev alt. simpl.

rewrite <- IHL. unfold rev_alt.

rewrite app OK. unfold rev in IHL. simpl.

Search app.
Print app.

simpl. unfold rev aux.
simpl.

* Your theorems and proofs below *)

* That's it for now! You can keep playing with other proofs if you have
* extra time. For example, it might be

* like a binary tree, and then write p 't What I Wan

* If you have a lot of extra time, I recommend looking at the
. e hi nse for

’ >l v) 37:02/45:16

Proof Sesh 1: a taste of my own medicine

211 views - Feb 3, 2022 e 16 CJ DISLIKE 2> SHARE =+ SAVE ...

B2O04IT3IT4200

Diracticsy
Qed.

Theorem rev_pres_length alt {A : Type}:
forall (1 : list A),
length (rev_alt 1) = length 1.
Proof.
induction 1; simpl; auto.
simpl. unfold rev alt. rewrite rev_aux pres length. simpl.
auto with arith.
Qed.

Eval compute in (rev_aux [1; 2; 3; 4] [5; 6; 7; 8]).

Lemma rev_aux_cons {A : Type}:
forall (11 12 : list A) (a : A),
rev_aux 11 12 = rev 11 ++ 12.
Proof,
induction 11; intros; auto.
simpl in *. rewrite (IHl1 _ a).
rewrite app OK. rewrite <. app_assoc.
reflexivity.

Messages

Lemma rev_rev_alt {A : Type)}:
forall (1 : list A),
rev_alt 1 = rev 1.
Proof.
intros 1. unfold rev_alt.
intros 1. induction 1; auto.
simpl. unfold rev_alt. simpl.
rewrite <- IHL. unfold rev alt.
rewrite app OK. unfold rev in IHL. simpl.

Search app.
Print app.

simpl. unfold rev aux.
simpl.

(* Your theoreus and proofs below *) am i repeating the same tactics

(*
* That's it for now! You can keep plaving with other proofs if vou have

<« » >l

o) 42117/ 4516

Proof Sesh 1: a taste of my own medicine

211 views - Feb 3,2022 e 16 GP DISLIKE 2> SHARE =+ SAVE ...

—~—
e
BO04LTIT 40O <) ,
Oracticsv
Qed. 1 goal)
A : Type

Theorem rev_pres_length alt {A : Type}: a:A

forall (1 : list A), 11 : list A

length (rev_alt 1) = length 1. IHL1 : forall 12 : list A, rev_ aux 11 12 = rev 11 ++ 12

Proof. 12 : list A

induction 1; simpl; auto. (1/1)

simpl. unfold rev alt. rewrite rev_aux pres length. simpl. rev aux 11 (a :: 12) = app (rev 11) [a] ++ 12

auto with arith.
Qed.

Eval compute in (rev_aux [1; 2; 3; 4] [5; 6; 7; 8]).

Lemma rev_aux_app {A : Type}:

forall (11 12 : list A),

rev_aux 11 12 = rev 11 ++ 12. Fom—

Proof.
induction 11; intros; auto.
simpl in *. rewrite IHl1.
rewrite app OK. rewrite <- app_assoc.
reflexivity.
Qed.

Lemma rev_rev_alt {A : Type}:
forall (1 : list A),
rev alt 1 = rev 1.
Proof.
intros 1. unfold rev alt] rewrite unfold rev.
induction 1; auto.
simpl. unfold rev_alt. simpl.
rewrite <- IHL. rewrite

unfold rev_alt.

rewrite app OK. unfold rev in IHL. simpl.

Search app.
Print app.

no wonder i just made it extra hard for
no reason

simpl. unfold rev_aux.
simpl.

(* Your and proofs below *)
4 P Pl o) 4357/4516

Proof Sesh 1: a taste of my own medicine

211 views * Feb 3, 2022

e 16 GJ DISLIKE > SHARE =+ SAVE ...

e Edit View Navigat Template Querie Too npile Windows Helg
-— Q & T 7T & L)

Oracticsy

Qed.

Theorem rev_pres_length_alt {A : Type}:
forall (1 : list A),
length (rev_alt 1) = length 1.
Proof.
induction 1; simpl; auto.
simpl. unfold rev alt. rewrite rev_aux pres length. simpl.
auto with arith.
Qed.

Eval compute in (rev_aux [1; 2; 3; 4] [5; 6; 7; 8]).

Lemma rev_aux_app {A : Type}:

forall (11 12 : list A),

rev_aux 11 12 = rev 11 ++ 12.

Proof.

induction 11; intros; auto.

simpl in *. rewrite IHl1.

rewrite app OK. rewrite <- app_assoc.

reflexivity.

Messages

Lemma rev_rev_alt {A : Type}:
forall (1 : list A),
rev_alt 1 = rev 1.
Proof.
intros 1. unfold rev alt.
rewrite rev_aux_app. apply List.app nil r.

ow! You can keep playing with othe
example, it might be

to define your own induct
ree, and then write proofs about those types

* If you have a lot of extra time, I recommend looking at the

* Coq source code on Github to get a sense for how it's implemented:
* https://github.com/coqg/coq. In any case, when we have 25 minutes

* left of class, please do this:

s 5% jr group and discuss the question below.
Pause (k)
2, nswer-just one answer for your group, clearly indicating

4 [l Pl) 445745106

Proof Sesh 1: a taste of my own medicine

211 views « Feb 3, 2022

Lemma Discover

s 16

G DISLIKE

2> SHARE

=+ SAVE

Good automation ought to
help us find these lemmas.

Lemma Discovery (Task 2 of 5) .

What's Hard

Static data already has the
perfect lemmas, but hides
the discovery process.

Lemma Discovery (Task 2 of 5) .

Ideas @

Learn to predict those
perfect lemmas anyways?

Lemma Discovery (Task 2 of 5)

Ideas ¥

Learn to predict lemmas
that mirror the structure
of the definitions and
programs?

Lemma Discovery (Task 2 of 5)

Ideas ® @

More granular data via
iInstrumentation, capturing
the development process?

Lemma Discovery (Task 2 of 5) .

Ideas @

Your ideas herel

Lemma Discovery (Task 2 of 5) .

Experts are Mere Mortals

Experts Proof Assistant

Program !-

g >
Specification !-

p ’

Lemma Discovery (Task 2 of 5)

Experts are Mere Mortals

Experts Proof Assistant

Has someone

Program
already proven 9 >
something like

Specification
’

Lemma Discovery (Task 2 of 5)

Do lots more:

3. relation discovery

You won't regret it!

Experts are Mere Mortals

Experts Proof Assistant

Program

Relation Discovery (Task 3 of 5)

Experts are Mere Mortals

Google

(=

coq binary number proofs X

: More

https://coq.inria.fr » library > Coq.NArith.BinNat.htm

Binary natural numbers, operations and properties - Standard ...
Every definitions and properties about binary natural numbers are placed in a module N for
Proofs of morphisms, obvious since eq is Leibniz

ary » Coq.Numbers.BinNums.ht

https://coq.inria.fr» lit

Library Cog.Numbers.BinNums
Binary Numerical Datatypes. Set Implicit Arguments. positive is a datatype representing the
strictly positive integers in a binary

https://coq.inria.fr » library » Coq.PArith.BinPosDef.htm

Library Coq.PArith.BinPosDef
Binary positive numbers, operations. Initial development by Pierre Crégut, CNET, Lannion, France
The type positive and its constructors xI and xO and xH

https://coq.inria.fr» |

Binary positive numbers, operations and properties - Standard ...
Properties of successor on binary positive numbers ... Correctness proofs for the square root

ry » Cog.PArith.BinPos.html

function. Inductive SqrtSpec : positive*mask -> positive

http://staff.ustc.edu.cn » courses » theory » slides

Some notes for lecture 1
Require Export Cog.omega. ... Then prove that starting with any natural number, converting to
binary, then converting back yields the same natural number

Relation Discovery (Tas

Close Enough?

Internet Dudes Proof Assistant

Program -
" x
nductive nat :=
. na
. na nat.

Relation Discovery (Task 3 of 5)

Close Enough?

Experts Proof Assistant

Program

Relation Discovery (Task 3 of 5)

Close Enough!

Inductive nat :=
| O : nat

| S : nat — nat.

— nat_to_N
nat
) A
N_to_nat

Relation Discovery (Task 3 of 5)

It's Hard

Inductive nat :=

| O : nat
| S : nat — nat.

Relation Discovery (Task 3 of 5)

It's Hard

Internet Dude Training

—

Inductive nat :=

| O : nat
Sznat_)nat.

Relation Discovery (Task 3 of 5)

It's Hard

Relation Discovery (Task 3 of 5)

It's Hard

Inference

Wow l've
never seen
anything like
this before!

Relation Discovery (Task 3 of 5)

AlphaGo lost a match
because of this kind of thing.

Relation Discovery (Task 3 of 5) .

In the world of proofs,
small changes can
break everything,.

Relation Discovery (Task 3 of 5) .

Good automation ought to
discover general relations.

Relation Discovery (Task 3 of 5) .

What's Hard

These relations are often
hot explicitly stated, and
often lack reasonable
syntactic proxies.

Relation Discovery (Task 3 of 5) .

Ideas ¥

Force the user to write

a few example functions
or proofs over the new
datatype?

Relation Discovery (Task 3 of 5)

Ideas @

Semantically embed
types and their relations?

Relation Discovery (Task 3 of 5) .

Ideas ¥

Allow the model to play
with the datatypes?

Relation Discovery (Task 3 of 5) .

Ideas ® @

Combine with
property-based testing?

Relation Discovery (Task 3 of 5) .

Ideas @

Your ideas herel

Relation Discovery (Task 3 of 5) .

So What?

Inference

equivalent
to unary!

Relation Discovery (Task 3 of 5)

Do lots more:

4. proof reuse & repair

You won't regret it!

So Far

Inductive nat :=
| O : nat

| S : nat — nat.

— nat_to_N
nat
) A
N_to_nat

Proof Reuse & Repair (Task 4 of 5)

So Far

proof
of nat
Inductive nat := :
| 0 : nat
| S : nat — nat.
~=~ 77" " hatttoN
nat
Ve = _
N_to_nat

Proof Reuse & Repair (Task 4 of 5)

So Far

Proof Reuse & Repair (Task 4 of 5)

It's Hard

Still too manual

Just equivalences

Only experts can extend

No human-friendly proof scripts

Proof Reuse & Repair (Task 4 of 5)

Good automation ought to
adapt proofs to change.

Proof Reuse & Repair (Task 4 of 5) ,

Imagine

Only the necessary human input
Any kind of relation

Not gated by experts
Human-friendly proof scripts

Proof Reuse & Repair (Task 4 of 5)

What's Hard

Most data sources hide
atomic edits, plus literally
hobody knows how to solve
this yet for some classes of

changes.

Proof Reuse & Repair (Task 4 of 5) .

Ideas ¥

Type theory work to better
understand classes of
changes, like quotient
eqguivalences.

Proof Reuse & Repair (Task 4 of 5) .

Ideas ® @ @

More granular data via
iInstrumentation, capturing
the development process?

Proof Reuse & Repair (Task 4 of 5) .

Ideas @

Train model to break down
less granular repairs?

Proof Reuse & Repair (Task 4 of 5) .

Ideas @

More datasets capturing
synthetic repair data?

Proof Reuse & Repair (Task 4 of 5) .

Ideas @

More datasets capturing
existing public repair data?

Proof Reuse & Repair (Task 4 of 5) .

Ideas @

More datasets!

Proof Reuse & Repair (Task 4 of 5) .

Ideas @

Allow the model to play
with and learn from
symbolic proof repair tools?

Proof Reuse & Repair (Task 4 of 5) .

Ideas ¥

Embed repairs across
eguivalences as paths

in higher-dimensional
spaces, a la cubical type
theory (so that proof repair
becomes path finding)?

Proof Reuse & Repair (Task 4 of 5) .,

Ideas ¥

Use e-graphs to compress
knowledge about
equivalences?

Proof Reuse & Repair (Task 4 of 5) .

Ideas @

Your ideas herel

Proof Reuse & Repair (Task 4 of 5) .

New Frontiers

Even cooler: crawl proof
corpora and construct a
knowledge graph.

Proof Reuse & Repair (Task 4 of 5) .

New Frontiers

Even cooler:
combine with something
like a search engine.

Proof Reuse & Repair (Task 4 of 5) .

Voevodsky'’s vision (IAS Memorial):
Imagine “mathematicians around the
world could collaborate by depositing
proofs and constructions in the
computer, and ... it would be up to the
computer to locate the equivalence
between formulations and [tol]
transport the constructions from one
context to another.”

Proof Reuse & Repair (Task 4 of 5) .

Do lots more:

5. semantic search
You won't regret it!

So Far

Search
\

¢

Proof Engineer Proof Assistant

Semantic Search (Task 5 of 5)

So Far

¢

Proof Engineer Proof Assistant

Godspeed

Semantic Search (Task 5 of 5)

So Far

Search is the #1 complaint In
my proof automation class.

Semantic Search (Task 5 of 5) _

Imagine

Online

Semantics-aware
Context-and-goal-aware

Mixed natural and formal queries

Semantic Search (Task 5 of 5)

What's Hard

We need to develop an
internet of proofs.

Semantic Search (Task 5 of 5) _

Ideas ¥

Build the internet of proofs:
an online, shared, updating,
cross-language database of
all of the proof data we have.

Semantic Search (Task 5 of 5) _

Let's bring this all together.

Imagine:
A Proof Search Engine

A Proof Search Engine

Online

Semantics-aware
Context-and-goal-aware

Mixed natural and formal queries

A Proof Search Engine

Refine natural language to specs
Create or discover helper lemmas
Find and adapt existing proofs

Discover relevant proof strategies

A Proof Search Engine

It'll draw on:
1. conjecture testing,
2. lemma discovery,
3. relation discovery,
4. proof reuse & repair, and
5. semantic search.

A Proof Search Engine
It'lL help us with:
1. conjecture testing,
2. lemma discovery,
3. relation discovery,
4. proof reuse & repair, and
5. semantic search.

A Proof Search Engine
It'lL help us with:
1. tactic prediction,
2. synthesis,
3. autoformalization,
4. premise selection, and
5. concept alignment.

No Matter the Motivation

Proofs Al

It's pretty It's hard

Programs are
terrible and

It's grounded

It's useful

everything is and a fun “AGI"
always broken
o challenge Weird bets
Imagine if we over what Al
could trust can do by

literally anything 202X Or 203X

Natural allies with
a common cause.

Let's do lots more:
1. conjecture testing,
2. lemma discovery,
3. relation discovery,
4. proof reuse & repair, and
5. semantic search.
We won't regret it!

