Verifying Nominal Equational Reasoning Modulo Algorithms

The library https://github.com/nasa/pvslib/nominal

Mauricio Ayala-Rincón

2nd Workshop on the development, maintenance, refactoring and search of large libraries of proofs Tbilisi, 13th September 2024

Mathematics and Computer Science Departments

 † Research supported by the Brazilian agencies CAPES, CNPq, and FAPDF

Joint Work With

Ana R. Oliveira

Washington Ribeiro

María Júlia Lima

Gabriela Ferreira

Maribel Fernández

Thaynara de Lima

Daniele Nantes

Mariano Moscato

Temur Kutsia

1/68

Gabriel Silva

Andrés González

David Cerna

Outline

- 1. Motivation
 - Unification modulo
 - Anti-unification
 - Syntactic anti-unification
 - Anti-unification modulo
- 2. Bindings and Nominal Syntax
- 3. Nominal C-unification
- 4. Issues Adapting First-Order to Nominal AC-Unification
- 5. Work in Progress and Future Work

Motivation

• Equality check: s = t? • Matching: There exists σ such that $s\sigma = t$? • Unification: There exists σ such that $s\sigma = t\sigma$? • Anti-unification: There exist r, σ and ρ such that $r\sigma = s$ and $r\rho = t$?

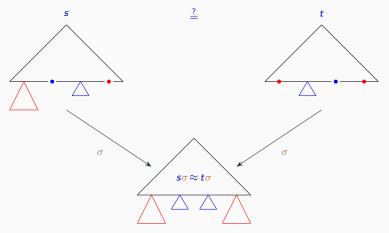
s and t, and u are terms in some signature and σ and ρ are substitutions.

Motivation

Unification modulo

Unification

Goal: find a substitution that identifies two expressions.



- Goal: to identify two expressions.
- Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

• Identify f(x, a) and f(b, y)

- Goal: to identify two expressions.
- Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

- Identify f(x, a) and f(b, y)
- solution $\{x/b, y/a\}$.

Example:

- Solution σ = {x/b} for f(x, y) = f(b, y) is more general than solution γ = {x/b, y/b}.
- σ is more general than γ :

there exists δ such that $\sigma \delta = \gamma$;

 $\delta = \{y/b\}.$

Interesting questions:

- Decidability, Unification Type, Correctness and Completeness.
- Complexity.
- With adequate data structures, there are linear solutions (Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type *unary* and linear.

When operators have algebraic equational properties, the problem is not as simple.

Example: for f commutative (C), $f(x, y) \approx f(y, x)$:

• f(x, y) = f(a, b)?

The unification problem is of type *finitary*.

When operators have algebraic equational properties, the problem is not as simple.

Example: for f commutative (C), $f(x, y) \approx f(y, x)$:

- f(x, y) = f(a, b)?
- Solutions: $\{x/a, y/b\}$ and $\{x/b, y/a\}$.

The unification problem is of type *finitary*.

Example: for f associative (A), $f(f(x, y), z) \approx f(x, f(y, z))$:

• f(x, a) = f(a, x)?

The unification problem is of type *infinitary*.

Example: for f associative (A), $f(f(x, y), z) \approx f(x, f(y, z))$:

- f(x, a) = f(a, x)?
- Solutions: $\{x/a\}, \{x/f(a, a)\}, \{x/f(a, f(a, a))\}, \dots$

The unification problem is of type *infinitary*.

Example: for f AC with unity (U), $f(x, e) \approx x$:

• f(x, y) = f(a, b)?

The unification problem is of type *finitary*.

Example: for f AC with unity (U), $f(x, e) \approx x$:

- f(x, y) = f(a, b)?
- Solutions: $\{x/e, y/f(a, b)\}$, $\{x/f(a, b), y/e\}$, $\{x/a, y/b\}$, and $\{x/b, y/a\}$.

The unification problem is of type *finitary*.

Example: for f A, and *idempotent* (I), $f(x, x) \approx x$:

• f(x, f(y, x)) = f(f(x, z), x))?

The unification problem is of type *zero* (Schmidt-Schauß 1986, Baader 1986).

Example: for f A, and *idempotent* (I), $f(x, x) \approx x$:

- f(x, f(y, x)) = f(f(x, z), x))?
- Solutions: $\{y/f(u, f(x, u)), z/u\}, \ldots$

The unification problem is of type *zero* (Schmidt-Schauß 1986, Baader 1986).

Example: for + AC, and *h* homomorphism (h), $h(x + y) \approx h(x) + h(y)$:

•
$$h(y) + a = y + z?$$

The unification problem is of type *zero* and undecidable (Narendran 1996). The same happens for ACUh (Nutt 1990, Baader 1993).

Example: for + AC, and *h* homomorphism (h), $h(x + y) \approx h(x) + h(y)$:

•
$$h(y) + a = y + z?$$

• Solutions: $\{y/a, z/h(a)\}, \{y/h(a) + a, z/h^2(a)\}, \dots, \{y/h^k(a) + \dots + h(a) + a, z/h^{k+1}(a)\}, \dots$

The unification problem is of type *zero* and undecidable (Narendran 1996). The same happens for ACUh (Nutt 1990, Baader 1993).

Synthesis Unification modulo i

		Synthesis Unification modulo				
Theory	Unif. type	Equality- checking	Matching	Unification	Related work	
					R65	
Syntactic	1	O(<i>n</i>)	O(<i>n</i>)	O(<i>n</i>)	MM76	
					PW78	
С	ω	O(<i>n</i> ²)	NP-comp.	NP-comp.	BKN87	
					KN87	
A	∞	O(<i>n</i>)	NP-comp.	NP-hard	M77	
					BKN87	
AU	∞	O(<i>n</i>)	NP-comp.	decidable	M77	
					KN87	
AI	0	O(<i>n</i>)	NP-comp.	NP-comp.	Klíma02	
					SS86	
					Baader86	

Synthesis Unification modulo

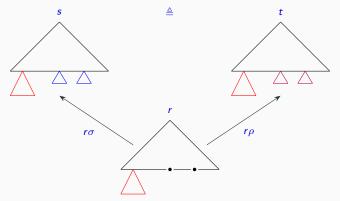
		Synthesis Unification modulo					
Theory	Unif. type	Equality- checking	Matching	Unification	Related work		
					BKN87		
AC	ω	O(<i>n</i> ³)	NP-comp.	NP-comp.	KN87		
					KN92		
ACU	ω	O(<i>n</i> ³)	NP-comp.	NP-comp.	KN92		
AC(U)I	ω	-	-	NP-comp.	KN92		
					BMMO20		
D	ω	-	NP-hard	NP-hard	TA87		
					B93		
ACh	0	-	-	undecidable	N96		
					EL18		
ACUh	0	-	-	undecidable	B93		
					N96		

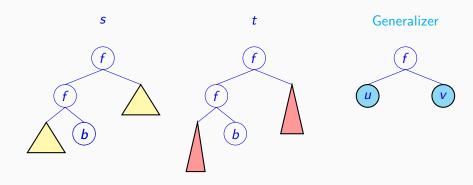
Motivation

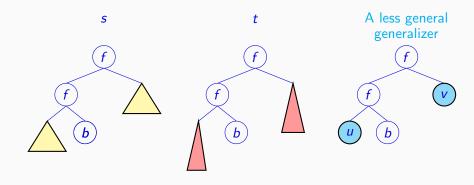
Anti-unification

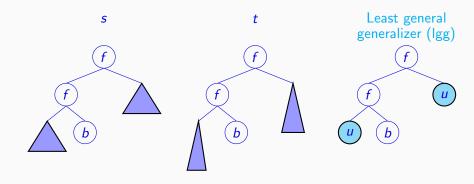
Anti-unification

Goal: find the commonalities between two expressions.









- Introduced by Gordon Plotkin [Plo70] and John Reynolds [Rey70]
- First-order: syntactic [Baa91]; C, A, and AC [AEEM14]; idempotent [CK20b], unital [CK20c], semirings [Cer20], absorption [ACBK24]
- Wigher-Order: patterns [BKLV17], top maximal and shallow generalizations variants [CK20a], equational patterns [CK19], modulo [CK20a]
- **Q** See david Cerna and Temur Kutsia survey [CK23].

Motivation

Syntactic anti-unification

Formal verification - Syntactical case

- terms $t ::= x | \langle \rangle | \langle t, t \rangle | f t$
- Labelled equations $E = \{s_i \triangleq t_i \mid i \leq n\}$

Configuration constraints

- All labels in $E_{II} \cup E_S$ are different,
- no redundant equations appear in E_S , and
- no label in $E_{U} \cup E_{S}$ belongs to $dom(\sigma)$.

Inference Rules

$$(\text{Decompose Function}) \frac{\langle \{f \ s \stackrel{\Delta}{=} f \ t\} \cup E, S, \sigma \rangle}{\langle \{s \stackrel{\Delta}{=} t\} \cup E, S, \{x \mapsto f \ y\} \circ \sigma \rangle}$$

$$(\text{Decompose Pair}) \frac{\langle \{\langle s, u \rangle \stackrel{\Delta}{=} \langle t, v \rangle\} \cup E, S, \{x \mapsto f \ y\} \circ \sigma \rangle}{\langle \{s \stackrel{\Delta}{=} t, u \stackrel{\Delta}{=} v\} \cup E, S, \{x \mapsto \langle y, z \rangle\} \circ \sigma \rangle}$$

$$(\text{Solve-Red}) \frac{\langle \{s \stackrel{\Delta}{=} t\} \cup E, S, \sigma \rangle}{\langle E, S, \{x \mapsto x'\} \circ \sigma \rangle} \text{ if } s \stackrel{\Delta}{=} t \in S$$

$$(\text{Solve-No-Red}) \frac{\langle \{s \stackrel{\Delta}{=} t\} \cup E, S, \sigma \rangle}{\langle E, \{s \stackrel{\Delta}{=} t\} \cup S, \sigma \rangle} \text{ if there is no } s \stackrel{\Delta}{=} t \in S$$

$$(\text{Solve-No-Red}) \frac{\langle \{s \stackrel{\Delta}{=} t\} \cup E, S, \sigma \rangle}{\langle E, \{s \stackrel{\Delta}{=} t\} \cup S, \sigma \rangle} \text{ if there is no } s \stackrel{\Delta}{=} t \in S$$

$$(\text{Solve-No-Red}) \frac{\langle \{s \stackrel{\Delta}{=} t\} \cup E, S, \sigma \rangle}{\langle E, \{s \stackrel{\Delta}{=} t\} \cup S, \sigma \rangle} \text{ if there is no } s \stackrel{\Delta}{=} t \in S$$

(Syntactic) $\frac{\langle \{0, x, 0\} \rangle \circ (2, 0) \rangle}{\langle E, S, \{x \mapsto s\} \circ \sigma \rangle}$ if neither decomposable nor solvable 21 / 68

Inference Rules

Example

$$(\operatorname{DecFun}) \frac{\langle \{f\langle f\langle c, b\rangle, c\rangle \stackrel{\Delta}{=} f\langle f\langle d, b\rangle, d\rangle \}, \emptyset, id\rangle}{\langle \{\langle f\langle c, b\rangle, c\rangle \stackrel{\Delta}{=} \langle f\langle d, b\rangle, d\rangle \}, \emptyset, \{x \mapsto f y\} \rangle}$$

$$(\operatorname{DecPair}) \frac{\langle \{f\langle c, b\rangle \stackrel{\Delta}{=} f\langle d, b\rangle, c \stackrel{\Delta}{=} d\}, \emptyset, \{x \mapsto f \langle z_1, z_2 \rangle\} \rangle}{\langle \{\langle c, b\rangle \stackrel{\Delta}{=} \langle d, b\rangle, c \stackrel{\Delta}{=} d\}, \emptyset, \{x \mapsto f \langle f z_3, z_2 \rangle\} \rangle}$$

$$(\operatorname{DecPair}) \frac{\langle \{c \stackrel{\Delta}{=} d, b \stackrel{\Delta}{=} b, c \stackrel{\Delta}{=} d\}, \emptyset, \{x \mapsto f \langle f \langle z, z_4 \rangle, z_2 \rangle\} \rangle}{\langle \{c \stackrel{\Delta}{=} d, b \stackrel{\Delta}{=} b, c \stackrel{\Delta}{=} d\}, \{x \mapsto f \langle f \langle z, z_4 \rangle, z_2 \rangle\} \rangle}$$

$$(\operatorname{SolveNRed}) \frac{\langle \{c \stackrel{\Delta}{=} d\}, \{c \stackrel{\Delta}{=} d\}, \{c \stackrel{\Delta}{=} d\}, \{x \mapsto f \langle f \langle z, b \rangle, z_2 \rangle\} \rangle}{\langle \{c \stackrel{\Delta}{=} d\}, \{c \stackrel{\Delta}{=} d\}, \{x \mapsto f \langle f \langle z, b \rangle, z_2 \rangle\} \rangle}$$

$$(\operatorname{SolRed}) \frac{\langle \{c \stackrel{\Delta}{=} d\}, \{c \stackrel{\Delta}{=} d\}, \{x \mapsto f \langle f \langle z, b \rangle, z_2 \rangle\} \rangle}{\emptyset, \{c \stackrel{\Delta}{=} d\}, \{x \mapsto f \langle f \langle z, b \rangle, z_2 \rangle\} \rangle}$$

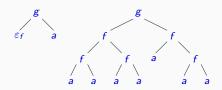
Motivation

Anti-unification modulo

- Interest on the formalization of anti-unification for theories with Commutative, Associative and Absorption-symbols: C-, A-, and a-symbols.
- Related α-symbols are a pair of a function and a constant symbol holding the axioms f(ε_f, x) = ε_f = f(x, ε_f).

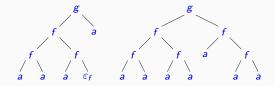
Example

Consider the terms:



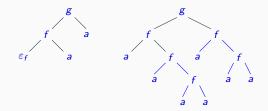
An \mathfrak{a} -generalization and \mathfrak{a} A-generalization will be illustrated.

By expanding ε_f in $g(\varepsilon_f, a)$, one obtains:



Notice that g(f(f(a, a), f(a, x)), y) is an \mathfrak{a} -generalization.

Considering the same terms modulo $\mathfrak{a}A$, and by *expanding* ε_f in $g(\varepsilon_f, a)$, one has:



g(f(x, y), y) is an \mathfrak{a} -generalization but not an \mathfrak{a} -generalization.

Anti-unification modulo types

Theory	Anti-unification type	References	
Syntactic	1	[Plo70, Rey70]	
А	ω	[AEEM14]	
С	ω	[AEEM14]	
† (U) ¹	ω	[CK20c]	
(U) ^{≥2}	nullary	[CK20c]	
‡ a	∞	[ACBK24]	
a(C)	∞	[ACBK24]	

(†)Unital: $\{f(i_f, x) = f(x, i_f) = x\}$ (‡)Absorption $f(\varepsilon_f, x) = \varepsilon_f = f(x, \varepsilon_f)$

27 / 68

Bindings and Nominal Syntax

Systems with bindings frequently appear in mathematics and computer science but are not captured adequately in first-order syntax.

For instance, the formulas

 $\forall x_1, x_2 : x_1 + 1 + x_2 > 0$ and $\forall y_1, y_2 : 1 + y_2 + y_1 > 0$

are not syntactically equal but should be considered equivalent in a system with binding and AC operators.

The nominal setting extends first-order syntax, replacing the concept of syntactical equality with α -equivalence, letting us represent those systems smoothly.

Profiting from the nominal paradigm implies adapting basic notions (substitution, rewriting, equality) to it.

Consider a set of variables $X = \{X, Y, Z, ...\}$ and a set of atoms $\mathbb{A} = \{a, b, c, ...\}$.

Definition 1 (Nominal Terms)

Nominal terms are inductively generated according to the grammar:

s,t ::= $a \mid \pi \cdot X \mid \langle \rangle \mid [a]t \mid \langle s,t \rangle \mid ft \mid f^{AC}t$

where π is a permutation that exchanges a finite number of atoms.

An atom permutation π represents an exchange of a finite amount of atoms in A and is presented by a list of swappings:

 $\pi = (a_1 \ b_1) :: \dots :: (a_n \ b_n) :: nil$

Permutations act on atoms and terms:

- $(a b) \cdot a = b;$
- $(a b) \cdot b = a;$
- $(a \ b) \cdot f(a, c) = f(b \ c);$
- $(a \ b) :: (b \ c) \cdot [a] \langle a, c \rangle = (b \ c) [b] \langle b, c \rangle = [c] \langle c, b \rangle.$

Two important predicates are the *freshness* predicate #, and the α -equality predicate \approx_{α} .

- a#t means that if a occurs in t then it must do so under an abstractor [a].
- $s \approx_{\alpha} t$ means that s and t are α -equivalent.

A *context* is a set of constraints of the form a#X. Contexts are denoted by the letters Δ , ∇ or Γ .

- First-order terms with binders and *implicit* atom dependencies.
- Easy syntax to present name binding predicates as a ∈ FreeVar(M), a ∈ BoundVar([a]s), and operators as renaming: (a b) · s.
- Built-in α -equivalence and first-order *implicit substitution*.
- Feasible syntactic equational reasoning: efficient equality-check, matching, and unification algorithms.

$$\frac{}{\Delta \vdash a \# \langle \rangle} (\# \langle \rangle)$$

$$rac{(\pi^{-1}(a)\#X)\in\Delta}{\Deltadash a\#\pi\cdot X}\,(\#X)$$

$$\frac{\Delta \vdash a \# t}{\Delta \vdash a \# [b] t} (\# [a] b)$$

$$\frac{\Delta \vdash a \# t}{\Delta \vdash a \# f \ t} (\# a p p)$$

$$-\Delta \vdash a \# b$$
 (#atom)

$$\frac{1}{\Delta \vdash a \#[a]t} (\#[a]a)$$

$$\frac{\Delta \vdash a \# s \quad \Delta \vdash a \# t}{\Delta \vdash a \# \langle s, t \rangle} (\# pair)$$

$$\frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash fs \approx_{\alpha} ft} (\approx_{\alpha} app) \qquad \frac{\Delta \vdash s \approx_{\alpha} a}{\Delta \vdash [a]s \approx_{\alpha} [b]t} (\approx_{\alpha} [a]b) \qquad \frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash [a]s \approx_{\alpha} [b]t} (\approx_{\alpha} [a]b)$$

$$\frac{\Delta \vdash s_0 \approx_{\alpha} t_0, \ \Delta \vdash s_1 \approx_{\alpha} t_1}{\Delta \vdash \langle s_0, s_1 \rangle \approx_{\alpha} \langle t_0, t_1 \rangle} (\approx_{\alpha} pair)$$

Δ

Let f be a C function symbol.

We add rule ($\approx_{\alpha} c$ -app) for dealing with C functions:

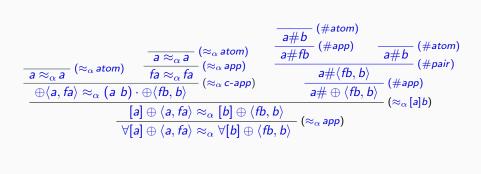
$$\frac{\Delta \vdash s_2 \approx_{\alpha} t_1 \quad \Delta \vdash s_1 \approx_{\alpha} t_2}{\Delta \vdash f^{\mathsf{C}} \langle s_1, s_2 \rangle \approx_{\alpha} f^{\mathsf{C}} \langle t_1, t_2 \rangle}$$

Let f be an AC function symbol.

We add rule ($\approx_{\alpha} ac\text{-}app$) for dealing with AC functions:

$$\frac{\Delta \vdash S_i(f^{AC}s) \approx_{\alpha} S_j(f^{AC}t) \quad \Delta \vdash D_i(f^{AC}s) \approx_{\alpha} D_j(f^{AC}t)}{\Delta \vdash f^{AC}s \approx_{\alpha} f^{AC}t}$$

 $S_n(f^*)$ selects the n^{th} argument of the *flattened* subterm f^* . $D_n(f^*)$ deletes the n^{th} argument of the *flattened* subterm f^* . Deriving $\vdash \forall [a] \oplus \langle a, fa \rangle \approx_{\alpha} \forall [b] \oplus \langle fb, b \rangle$, where \oplus is C:



Nominal C-unification

Nominal C-unification

Unification problem: $\langle \Gamma, \{s_1 \approx_{\alpha}^? t_1, \dots s_n \approx_{\alpha}^? t_n\} \rangle$

Unification solution: $\langle \Delta, \sigma \rangle$, such that

- $\Delta \vdash \Gamma \sigma$;
- $\Delta \vdash s_i \sigma \approx_{\alpha} t_i \sigma, 1 \leq i \leq n$.

We introduced nominal (equality-check, matching) and unification algorithms that provide solutions given as triples of the form:

$\langle \Delta, \sigma, FP \rangle$

where *FP* is a set of fixed-point equations of the form $\pi \cdot X \approx_{\alpha}? X$. This provides a finite representation of the infinite set of solutions that may be generated from such fixed-point equations.

Fixed point equations such as $\pi \cdot X \approx_{\alpha}? X$ may have infinite independent solutions.

For instance, in a signature in which \oplus and \star are C, the unification problem: $\langle \emptyset, \{(a \ b) X \approx_{\alpha}^? X\} \rangle$

has solutions: $\begin{cases} \langle \{a\#X, b\#X\}, id \rangle, \\ \langle \emptyset, \{X/a \oplus b\} \rangle, \langle \emptyset, \{X/a \star b\} \rangle, \dots \\ \langle \{a\#Z, b\#Z\}, \{X/(a \oplus b) \oplus Z\} \rangle, \dots \\ \langle \emptyset, \{X/(a \oplus b) \star (b \oplus a)\} \rangle, \dots \end{cases}$

Issues Adapting First-Order to Nominal AC-Unification

We modified Stickel-Fages's seminal AC-unification algorithm to avoid mutual recursion and verified it in the PVS proof assistant.

We formalised the algorithm's termination, soundness, and completeness [AFSS22].

Let f be an AC function symbol. The solutions that come to mind when unifying:

 $f(X, Y) \approx^{?} f(a, W)$

are:

$$\{X \rightarrow a, Y \rightarrow W\}$$
 and $\{X \rightarrow W, Y \rightarrow a\}$

Are there other solutions?

Yes!

For instance, $\{X \to f(a, Z_1), Y \to Z_2, W \to f(Z_1, Z_2)\}$ and $\{X \to Z_1, Y \to f(a, Z_2), W \to f(Z_1, Z_2)\}.$

Example

the **AC Step** for AC-unification.

How do we generate a complete set of unifiers for:

 $f(X, X, Y, a, b, c) \approx f(b, b, b, c, Z)$

Eliminate common arguments in the terms we are trying to unify.

Now, we must unify

 $f(X,X,Y,a) \approx^? f(b,b,Z)$

According to the number of times each argument appears, transform the unification problem into a linear equation on \mathbb{N} :

 $2X_1 + X_2 + X_3 = 2Y_1 + Y_2,$

Above, variable X_1 corresponds to argument X, variable X_2 corresponds to argument Y, and so on.

Generate a basis of solutions to the linear equation.

Table 1: Solutions for the Equation $2X_1 + X_2 + X_3 = 2Y_1 + Y_2$

X1	<i>X</i> ₂	X ₃	Y ₁	Y ₂	$2X_1 + X_2 + X_3$	$2Y_1 + Y_2$
0	0	1	0	1	1	1
0	1	0	0	1	1	1
0	0	2	1	0	2	2
0	1	1	1	0	2	2
0	2	0	1	0	2	2
1	0	0	0	2	2	2
1	0	0	1	0	2	2

Associate new variables with each solution.

Table 2: Solutions for the Equation $2X_1 + X_2 + X_3 = 2Y_1 + Y_2$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>Y</i> ₁	<i>Y</i> ₂	$2X_1 + X_2 + X_3$	$2Y_1 + Y_2$	New Variables
0	0	1	0	1	1	1	<i>Z</i> ₁
0	1	0	0	1	1	1	<i>Z</i> ₂
0	0	2	1	0	2	2	<i>Z</i> ₃
0	1	1	1	0	2	2	Z4
0	2	0	1	0	2	2	Z_5
1	0	0	0	2	2	2	<i>Z</i> ₆
1	0	0	1	0	2	2	Z ₇

Observing the previous Table, relate the "old" variables and the "new" ones:

$$X_{1} \approx^{?} Z_{6} + Z_{7}$$

$$X_{2} \approx^{?} Z_{2} + Z_{4} + 2Z_{5}$$

$$X_{3} \approx^{?} Z_{1} + 2Z_{3} + Z_{4}$$

$$Y_{1} \approx^{?} Z_{3} + Z_{4} + Z_{5} + Z_{7}$$

$$Y_{2} \approx^{?} Z_{1} + Z_{2} + 2Z_{6}$$

Decide whether we will include (set to 1) or not (set to 0) every "new" variable. Every "old" variable must be different than zero.

In our example, we have 2^7 possibilities of including/excluding the variables Z_1, \ldots, Z_7 , but after observing that X_1, X_2, X_3, Y_1, Y_2 cannot be set to zero, only 69 cases remain.

Drop the cases where the variables representing constants or subterms headed by a different AC function symbol are assigned to more than one of the "new" variables.

For instance, the potential new unification problem

{
$$X_1 \approx ? Z_6, X_2 \approx ? Z_4, X_3 \approx ? f(Z_1, Z_4),$$

 $Y_1 \approx ? Z_4, Y_2 \approx ? f(Z_1, Z_6, Z_6)$ }

should be discarded as the variable X_3 , which represents the constant *a*, cannot unify with $f(Z_1, Z_4)$.

Replace "old" variables by the original terms they substituted and proceed with the unification.

Some new unification problems may be unsolvable and **will be discarded later**. For instance:

 $\{X \approx ? Z_6, Y \approx ? Z_4, a \approx ? Z_4, b \approx ? Z_4, Z \approx ? f(Z_6, Z_6)\}$

In our example,

$$f(X, X, Y, a, b, c) \approx f(b, b, b, c, Z)$$

the solutions are:

$$\begin{cases} \sigma_{1} = \{Y \to f(b, b), Z \to f(a, X, X)\} \\ \sigma_{2} = \{Y \to f(Z_{2}, b, b), Z \to f(a, Z_{2}, X, X)\} \\ \sigma_{3} = \{X \to b, Z \to f(a, Y)\} \\ \sigma_{4} = \{X \to f(Z_{6}, b), Z \to f(a, Y, Z_{6}, Z_{6})\} \end{cases}$$

We found a loop while solving nominal AC-unification problems using Stickel-Fages' Diophantine-based algorithm.

For instance

$$f(X,W) \approx^{?} f(\pi \cdot X, \pi \cdot Y)$$

Variables are associated as below:

 U_1 is associated with argument X, U_2 is associated with argument W, V_1 is associated with argument $\pi \cdot X$, and V_2 is associated with argument $\pi \cdot Y$. The Diophantine equation associated is $U_1 + U_2 = V_1 + V_2$.

The table with the solutions of the Diophantine equations is shown below. The name of the new variables was chosen to make clearer the loop we will fall into.

<i>U</i> ₁	<i>U</i> ₂	<i>V</i> ₁	<i>V</i> ₂	$U_1 + U_2$	$V_1 + V_2$	New variables
0	1	0	1	1	1	<i>Z</i> ₁
0	1	1	0	1	1	W_1
1	0	0	1	1	1	<i>Y</i> ₁
1	0	1	0	1	1	<i>X</i> ₁

Table 3: Solutions for the Equation $U_1 + U_2 = V_1 + V_2$

 $\{X \approx^{?} X_{1}, W \approx^{?} Z_{1}, \pi \cdot X \approx^{?} X_{1}, \pi \cdot Y \approx^{?} Z_{1} \}$ $\{X \approx^{?} Y_{1}, W \approx^{?} W_{1}, \pi \cdot X \approx^{?} W_{1}, \pi \cdot Y \approx^{?} Y_{1} \}$ $\{X \approx^{?} Y_{1} + X_{1}, W \approx^{?} W_{1}, \pi \cdot X \approx^{?} W_{1} + X_{1}, \pi \cdot Y \approx^{?} Y_{1} \}$ $\{X \approx^{?} Y_{1} + X_{1}, W \approx^{?} Z_{1}, \pi \cdot X \approx^{?} X_{1}, \pi \cdot Y \approx^{?} Z_{1} + Y_{1} \}$ $\{X \approx^{?} X_{1}, W \approx^{?} Z_{1} + W_{1}, \pi \cdot X \approx^{?} W_{1} + X_{1}, \pi \cdot Y \approx^{?} Z_{1} \}$ $\{X \approx^{?} Y_{1}, W \approx^{?} Z_{1} + W_{1}, \pi \cdot X \approx^{?} W_{1}, \pi \cdot Y \approx^{?} Z_{1} + Y_{1} \}$ $\{X \approx^{?} Y_{1}, W \approx^{?} Z_{1} + W_{1}, \pi \cdot X \approx^{?} W_{1}, \pi \cdot Y \approx^{?} Z_{1} + Y_{1} \}$ $\{X \approx^{?} Y_{1} + X_{1}, W \approx^{?} Z_{1} + W_{1}, \pi \cdot X \approx^{?} W_{1} + X_{1}, \pi \cdot Y \approx^{?} Z_{1} + Y_{1} \}$

After solving the linear Diophantine system

Seven branches are generated:

$$B1 - \{\pi \cdot X \approx^? X\}, \sigma = \{W \mapsto \pi \cdot Y\}$$

- $B2 \sigma = \{ W \mapsto \pi^2 \cdot Y, X \mapsto \pi \cdot Y \}$
- $B3 \{f(\pi^2 \cdot Y, \pi \cdot X_1) \approx^? f(W, X_1)\}, \sigma = \{X \mapsto f(\pi \cdot Y, X_1)\}$
- B4 No solution
- B5 No solution
- $B6 \sigma = \{W \mapsto f(Z_1, \pi \cdot X), Y \mapsto f(\pi^{-1} \cdot Z_1, \pi^{-1} \cdot X)\}$
- $B7 \{f(\pi \cdot Y_1, \pi \cdot X_1) \approx^? f(W_1, X_1)\},\$

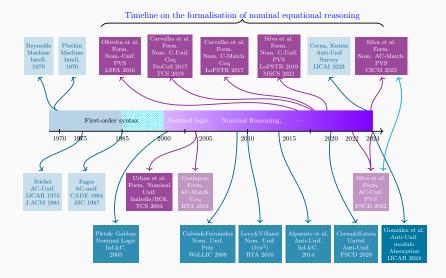
 $\sigma = \{ X \mapsto f(Y_1, X_1), \ W \mapsto f(Z_1, W_1), Y \mapsto f(\pi^{-1} \cdot Z_1, \pi^{-1} \cdot Y_1) \}$

Focusing on Branch 7, notice that the problem before the AC Step and the problem after the AC Step and instantiating the variables are, respectively:

 $P = \{f(X, W) \approx^{?} f(\pi \cdot X, \pi \cdot Y)\}$ \mathbf{D} $P_{1} = \{f(X_{1}, W_{1}) \approx^{?} f(\pi \cdot X_{1}, \pi \cdot Y_{1})\}$

Work in Progress and Future Work

Synthesis on Nominal Equational Modulo



Results

		Synthesis Unification Nominal Modulo					
Theory	Unif. type	Equality- checking	Matching	Unification	Related work		
					UPG04 LV10		
\approx_{α}	1	$O(n \log n)$	$O(n \log n)$	O(<i>n</i> ²)	CF08 CF10		
					LSFA2015		
С	∞	$O(n^2 \log n)$	NP-comp.	NP-comp.	LOPSTR2017		
					FroCoS2017		
					TCS2019		
					LOPSTR2019		
					MSCS2021		
A	∞	$O(n \log n)$	NP-comp.	NP-hard	LSFA2016		
					TCS2019		
AC	ω	$O(n^3 \log n)$	NP-comp.	NP-comp.	LSFA2016		
					TCS2019		
					CICM2023		

Q Study how to avoid the circularity in nominal AC-unification.

- How circularity enriches the set of computed solutions?
- Onder which conditions can circularity be avoided?
- Formalising anti-unification.
 - Only recently, anti-unification modulo a-, C-, and (aC)-symbols have been addressed. Procedures combining such properties have been shown to be challenging from theoretical and practical perspectives.

Thank you for your attention!

References i

- Mauricio Ayala-Rincón, David M. Cerna, Andrés Felipe Gonzélez Barragán, and Temur Kutsia, Equational Anti-unification over Absorption Theories, IJCAR, 2024.
- María Alpuente, Santiago Escobar, Javier Espert, and José Meseguer, A modular order-sorted equational generalization algorithm, Information and Computation 235 (2014), 98–136.
- Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva, and Daniele Nantes Sobrinho, A Certified Algorithm for AC-Unification, FSCD, 2022.
- Franz Baader, Unification, weak unification, upper bound, lower bound, and generalization problems, RTA, 1991.

References ii

- Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret, Higher-order pattern anti-unification in linear time, J. Autom. Reason. 58 (2017), no. 2, 293–310.
- David M. Cerna, Anti-unification and the theory of semirings, Theo. Com. Sci. 848 (2020), 133–139.
- David M. Cerna and Temur Kutsia, *A generic framework for higher-order generalizations*, FSCD, 2019.
- . Higher-order pattern generalization modulo equational theories, Math. Struct. Comput. Sci. 30 (2020), no. 6, 627–663.
- _____, Idempotent anti-unification, ACM Trans. Comput. Log.
 21 (2020), no. 2, 10:1–10:32.
 - _____, Unital anti-unification: type algorithms, 2020.

- Anti-unification and generalization: A survey, IJCAI, 2023.
- Gordon D. Plotkin, *A note on inductive generalization*, Machine Intelligence 5 **5** (1970), 153–163.
- John C. Reynolds, *Transformational system and the algebric structure of atomic formulas*, Machine Intelligence 5 **5** (1970), 135–151.