
An Indexer and Query Language for Libraries
written in LambdaPi/Dedukti

Claudio Sacerdoti Coen
<claudio.sacerdoticoen@unibo.it>

University of Bologna

13/09/2024

Outline

Specific challenges for Dedukti/Lambdapi indexing and retrieval

Contribution to LambdaPi code

Implementation

Dedukti/LambdaPi (LF modulo)

▶ types are identified up to the symmetric-transitive closure
of rewriting rules

example: ⊢ I : True and 2 < 3 ↪→ True;
therefore ⊢ I : 2 < 3

▶ greatly simplifies LF encodings

example: El (arrow A A) ↪→ El A → El A
therefore ⊢ λx : A.x : El (arrow A A)

▶ makes indexing, retrieval and alignment between libraries
much harder

Indexes/search should be up to as well
example (Coqine’s output): El (arrow N N) → N

Libraries in Dedukti/LambdaPi

When exporting the library of an ITP to Dedukti, you get the
encodings of the statements.

example:

def fact :
__ : cic.Term univs.Typez nat ->

cic.Term univs.Typez nat

but a user is likely to look for just nat -> nat

Indexing/search should be up to encoding!
problem: encodings are user defined

Libraries and alignments

In Dedukti you can have libraries coming from multiple
systems/theories/encodings.

Open problem: how to combine results from two libraries?

Preliminary problem: how to look for statements in multiple
libraries where concepts have different definitions and shapes?

Indexing/search should be up to alignments!
Example: looking for r = n/m one should retrieve Coq’s
r = div n m (p : m ̸= 0), Isabelle’s r = div n m and Abella’s
div n m r

Alignments can be complex and they are also user defined

Dedukti to the rescue!

Rewriting is also the solution:

▶ Indexing/searching up to rewriting rules is approximated
indexing normal forms of terms
example: index El (arrow N N) → N as (N → N) → N

▶ Indexing/searching up to encodings is implemented by
using user provided rewrite rules to “undo” the encoding
example: “El $T ↪→ $T ” or “cic.Term $T ↪→ $T ”

▶ Indexing/searching up to alignment is implemented by
using user provided rewrite rules to map terms to
“Wikipedia”/content forms
example:
“Coq.ConstructiveReals.div $n $m ↪→ Wikipedia.div $n $m”

Wait a minute!

Consider again the rule to undo the rewriting:

El $T ↪→ $T

The right hand side is not well typed!
The rule is rejected

We cannot reuse the rewriting machinery of Dedukti/LambdaPi,
unless we relax all checks.

Outline

Specific challenges for Dedukti/Lambdapi indexing and retrieval

Contribution to LambdaPi code

Implementation

What has been implemented

In LambdaPi 2.4.0 (2023-07-28):

▶ lambdapi index --rules filerules

[--add] file1 ... filen
▶ creates an index for the given Dedukti/LambdaPi files
▶ filerules contains the (untyped, unqualified) rewriting

rules for indexing up-to
▶ lambdapi search query

▶ runs a query against the index
▶ there is also an interactive LambdaPi command to query

the library
▶ lambdapi websearch [--port=PORT]

▶ runs a local search engine that can be interrogated using a
standard browser (default port 808)

Scenarios for Formula Retrieval
Why should we be interested in searching for a formula?

▶ Scenario 1: searching the current development

▶ We have some theories already loaded and we are
developing a new one;

▶ we want to retrieve theorems from them;
▶ the foundation is typically just one;
▶ typical motivation: to apply the result in a proof step (e.g.

during automation);
example: find a theorem whose conclusion generalizes
3x + y > f (x) + g(y)
possible result:
∀x , y , x ′, y ′.x > x ′ ∧ y ≥ y ′ ⇒ x + y > x ′ + y ′

▶ interested in speed and therefore high precision if done
automatically;

▶ the query must match precisely and it is usually espressed
as a pattern up to instantiation/generalization

Scenarios for Formula Retrieval

Why should we be interested in searching for a formula?

▶ Scenario 2: searching in every library

▶ We want to look for a theorem inside all libraries;
▶ heterogeneous foundations;
▶ the libraries have not been loaded;
▶ interested in high recall;
▶ low precision is a feature: we want to find related theorems;
▶ example: find a statement that speaks about groups, has

as a premise is normal and whose conclusion contains | |;
▶ queries are written in a query language; atomic queries are

patterns up to instantiation/generalization or restrictions
based on metadata

Scenarios for Formula Retrieval
We focused on scenario 2: searching in every library only
▶ every user has just one global persistent index that is

manually updated
▶ the current LambdaPi devel. is not indexed/kept in sync
▶ query language:

Q ::= B | Q,Q | Q;Q | Q|PATH
B ::= WHERE HOW GENERALIZE? PATTERN
PATH ::= << string >>
WHERE ::= name

| anywhere
| rule | lhs | rhs
| type | concl | hyp | spine

HOW ::= > | = | >=
GENERALIZE ::= generalize
PATTERN ::= << term possibly containing

placeholders _ (for terms)
and V# (for variables) >>

The Query Language by Examples
Examples:
▶ name = nat

all constants whose name is nat
▶ name = nat | matita_arithmetics

all constants whose name is nat that are defined in the
arithmetical library of Matita

▶ concl = nat
all constants whose type is of the form

−−−−−→
Πxi : Ti .C

and C is not a product
and C matches the pattern nat
example:
def gcd :
__ : cic.Term univs.Typez matita_arithmetics_nat.nat ->
__1 : cic.Term univs.Typez matita_arithmetics_nat.nat ->
cic.Term univs.Typez matita_arithmetics_nat.nat

nat in the pattern has been disambiguated first to
matita_arithmetics_nat.nat via the implicit query
name = nat

The Query Language by Examples

Examples:
▶ concl = plus O _

the conclusion must match exactly the pattern plus O _
NO MATCH!

▶ concl >= plus O _
a subterm of the conclusion must match the
pattern plus O _
example: it matches the theorem ∀n.plus O n = n

▶ concl = generalize (plus 3 4 = plus 4 3)
the conclusion must be a generalization of the pattern
plus 3 4 = plus 4 3
example: it matches the theorem
∀n,m.plus n m = plus m n because n and m are
universally quantified

The Query Language

▶ Basic queries can be combined with
conjunctions/disjunctions (Prolog syntax)

▶ Many kind of positions to identify parts of a type/rule
example: in

−−−−−→
Πxi : Ti .C

▶ the whole formula is a type
▶ each Ti is an hypothesis and
▶

−−−−−−−−→
Πxi+n : Ti+n.C is a spine

▶ Rewriting rules are also indexed with positioning
information (lhs, rhs, anywhere)

Outline

Specific challenges for Dedukti/Lambdapi indexing and retrieval

Contribution to LambdaPi code

Implementation

Indexing
An index is made of:
▶ a map from constant names to sets of identifiers

example: nat 7→ matita_arithmetics_nat.nat
used also to disambiguate constants in queries

▶ a discrimination tree mapping terms to sets of (identifiers ×
positions)
example: plus O #V 7→
<matita_arithmetics_nat.plus_O_n, conclusion>

▶ terms are normalized according to the user rules before
computing the subterms

▶ every subterm of the types of constants/sides of rules is
indexed

▶ all variables are mapped to the same placeholder #V during
indexing

▶ all subterms are indexed twice: once normally, once
replacing variables universally quantified in the spine with a
“don’t care” placeholder _
used by generalization basic queries

Conclusions

▶ Tested on the standard libraries of Matita and HOL-Light
▶ Rewriting rules to undo those two encodings implemented

(6 lines in total)
▶ Size of the combined index on disk: 20MB (6MB Matita +

14MB HOL)
▶ Indexing time is reasonably fast (few minutes)

▶ Future work:
▶ experiment with alignments
▶ experiment with other systems/libraries
▶ integrate in proof search

	Specific challenges for Dedukti/Lambdapi indexing and retrieval
	Contribution to LambdaPi code
	Implementation

