
Reinforcement Learning for Term Rewrite

Systems

Robin Rawiel

Osnabrück University

rrawiel@uos.de

Lukas Niehaus

Osnabrück University

luniehaus@uos.de

January 31, 2025

1 Introduction

In recent years, Large Language Models (LLMs) have been increasingly applied
to mathematical and reasoning tasks.

These models take signi�cant amounts of training and yet are still capable of
dreaming up incorrect solutions or struggle with simple algebraic tasks. For this
reason, we investigate methods to improve the performance of models on sym-
bolic reasoning tasks. Term Rewrite Systems (TRS) o�er an intuitive, reliable,
veri�able and Turing-complete reasoning framework on formal languages.

With this work, we want to explore the potential of combining TRS with Re-
inforcement Learning (RL). We introduce treewrite, a Python library designed
to facilitate the integration of TRS with neural networks, enabling e�cient
problem-solving through RL.

2 Related Work

TRS have long been used in a variety of applications, ranging from declarative
programming languages [1] to Theorem Proving (TP) [2] and can even be ap-
plied to chemical transformation searching [4]. Recent advancements in machine
learning, and in particular RL have had promising impacts on current research.

Recently, Xin et al. improved Deepseek [9], an LLM tree search architecture
to present DeepSeek-Prover-V1.5 [13], an LLM for functional programming [7].
After training the LLM, they apply Reinforcement Learning from Proof Assis-
tant Feedback (RLPAF) for �ne-tuning.

Piepenbrock et al. [8], on the other hand, present a neural rewriting system
along with the Strati�ed Shortest Solution Imitation Learning (3SIL) training
method. They use the system to assist the Prover9 [6] Automated Theorem
Prover (ATP) and signi�cantly improve their performance. Consequently, we
aim to build on this work and optimize our training process, by including syn-
thetically generated episodes.

1



3 Methodology

We present our Python library treewrite, designed to solve a range of challenges
that can be formulated as TRS. The treewrite library enables users to de�ne
grammars and rules for TRS and swiftly integrate them into RL environments
using the gymnasium framework [12].

Our library o�ers several key features:

� Grammar De�nition: Grammars can be de�ned using Extended Backus
Naur-Form (EBNF) or similar methods, ensuring easy compatibility with
existing formal languages.

� Tree Parsing & Conversion: Converts terms to parse trees and vice
versa, while enabling seamless integration with neural networks through
tensor representations.

� Rule Application: Facilitates the application of rewrite rules. Rules
may be conditional and can be applied to speci�c nodes.

� Tokenization Scheme: Provides e�cient tokenization based on gram-
mar speci�cations, allowing for node selection during the rule application.

� Random Sampler: Generates random and balanced trees for the pro-
vided grammar, inspired by Lample et al. [3]. These random trees serve
as initial states for the RL environment.

� Type System: We provide a type system to ensure correctness of the
parse trees. Types can be in relation with each other, e.g. the type N is
contained within the type Z.

� Context Management: Some TRS require information to be saved in a
context. Our library provides an optional context class to handle the types
of individual variables, their boundedness, or other necessary information.

4 Proof-of-Concept

We implemented a Boolean algebra system within the gymnasium frame-
work [12], where the goal is to transform terms into Conjunctive Normal Form
(CNF). In the environment, a state is represented as a parse tree, while an action
consists of a rule to be applied and the node in the tree, where the rule should
be applied. The RL agent receives rewards based on successful transformations
or penalties for invalid actions as well as actions that result in a state that has
been seen during the same episode. After training with stable-baselines3 's [10]
PPO [11] algorithm, we achieved a 100% success rate on random terms. The
nature of this total success rate is due to the trivial nature of the problem. An
agent only needs to apply �ve di�erent rules [5], whenever applicable and will
always reach the CNF in a �xed number of steps.

Ultimately, we aim to apply this method to more complex mathematical
environments, including TP.

2



References

[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
J.F. Quesada. Maude: speci�cation and programming in rewriting logic.
Theoretical Computer Science, 285(2):187�243, 2002. Rewriting Logic and
its Applications.

[2] Jieh Hsiang, Hélène Kirchner, Pierre Lescanne, and Michaël Rusinowitch.
The term rewriting approach to automated theorem proving. The Journal

of Logic Programming, 14(1):71�99, 1992.

[3] Guillaume Lample and François Charton. Deep learning for symbolic math-
ematics, 2019.

[4] Martin Mann, Heinz Ekker, and Christoph Flamm. The graph grammar
library-a generic framework for chemical graph rewrite systems. In The-

ory and Practice of Model Transformations: 6th International Conference,

ICMT 2013, Budapest, Hungary, June 18-19, 2013. Proceedings 6, pages
52�53. Springer, 2013.

[5] Kim Marriott and Peter J Stuckey. Programming with constraints: an

introduction. MIT press, 1998.

[6] William McCune. Release of prover9. In Mile high conference on quasi-

groups, loops and nonassociative systems, Denver, Colorado, 2005.

[7] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover
and programming language. In André Platzer and Geo� Sutcli�e, editors,
Automated Deduction � CADE 28, pages 625�635, Cham, 2021. Springer
International Publishing.

[8] Jelle Piepenbrock, Tom Heskes, Mikolá² Janota, and Josef Urban. Guiding
an automated theorem prover with neural rewriting. In Jasmin Blanchette,
Laura Kovács, and Dirk Pattinson, editors, Automated Reasoning, pages
597�617, Cham, 2022. Springer International Publishing.

[9] Tanya Piplani and David Bamman. Deepseek: Content based image search
& retrieval, 2018.

[10] Antonin Ra�n, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximil-
ian Ernestus, and Noah Dormann. Stable-baselines3: Reliable reinforce-
ment learning implementations. Journal of Machine Learning Research,
22(268):1�8, 2021.

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017.

[12] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De
Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Markus Krim-
mel, Arjun KG, Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulho�,

3



Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A standard
interface for reinforcement learning environments, 2024.

[13] Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao,
Haocheng Wang, Bo Liu, Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao,
Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F. Wu, Fuli Luo, and Chong
Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback for rein-
forcement learning and monte-carlo tree search, 2024.

4


	Introduction
	Related Work
	Methodology
	Proof-of-Concept

