
Are LLMs Ready for Software Verification?

Abstract. Despite being able to produce reliable software, formal meth-
ods have hardly been adopted in mainstream programming. With the ad-
vent of large language models, it becomes more feasible to automatically
generate code along with verification guarantees. This research explores
whether LLMs can produce verified code from a textual description and a
partial specification. We were able to achieve 63% success rate in Nagini
and 40% in Verus on the HumanEval benchmark.

Software is notoriously difficult to get right, and the cost of errors can be as-
tronomical [8]. Formal methods aim to prevent avoidable mistakes by providing
a programmer with means to reason about a program and prove its correctness.
Such tools are especially valued in critical domains such as cryptography [17],
finance [2], and aerospace [14], where software failures can have severe conse-
quences. However, adopting formal verification requires significant additional
effort and expertise, which limits their use beyond high-stakes applications.

SMT-powered software verification systems such as Dafny and F* partially
automate proof search, but require using specialized languages for both programs
and verification primitives. This implies that to introduce verification into an
existing project, one needs to make a tough decision of adopting a new language,
which often comes with worse developer tools and a higher entrance barrier for
the engineers. One way to overcome this drawback is to use an intermediate
verification language such as Viper [11], with frontends in mainstream languages.
The last hurdle to clear is to make it easy for developers to specify properties of
their programs, as well as to prove that they hold.

In addition to a function signature and a body, verified code contains a speci-
fication of its behavior. It includes preconditions that describe assumptions held
before the evaluation of the function begins and guarantees ensured after execu-
tion, called postconditions. Sometimes these are enough to establish correctness,
but in the majority of non-trivial cases, additional statements should be proven,
such as loop invariants or lemmas.

Most prior research has explored generation of either complete proofs [16,12,4]
or their parts, such as invariants and assertions [10,13,7], for existing implemen-
tations. Other works produce postconditions [6] from textual descriptions, as well
as complete verified code in Dafny [15] and in Rust [1]. This approach has a pos-
sibility of misinterpreting the user intent and thus producing code which works
incorrectly despite being formally verified. In this project, we explore whether
large language models (LLMs) alone are capable of generating verified code in
mainstream languages from a text description and pre- and postconditions pro-
vided by a programmer. Specifically, we focus on Nagini [5] and Verus [9] — the
verifiers of subsets of Python and Rust.



2

In order to evaluate the abilities of the model, we created a benchmark based
on HumanEval [3]. We manually implemented a subset of the problems in Nagini1
and contributed in a collaborative effort to create it for Verus2. Notice that our
benchmarks contain fewer problems than the original dataset in Python, since
not every problem in it is well-suited for verification. For some of them, specifi-
cation duplicates the implementation (e.g. task 67), while unsupported language
features are needed for others (e.g. tasks 2 and 4). In total, our benchmarks in-
clude 106 handwritten, verified programs in Nagini and 55 in Verus, along with
accompanying textual descriptions.

In this extended abstract, we only focus on a scenario where the user describes
the problem in a natural language and supplies a function signature with pre-
and postconditions, as we view it as the most precise way to express the user
intent. An example of a query is “Checks if a given string is a palindrome” along
with the following code.

def i s_pal indrome ( text : L i s t [ int ] ) −> bool :
Requires (Acc ( l i s t_pred ( text ) ) ) # precond i t i on
Ensures (Acc ( l i s t_pred ( text ) ) ) # pos t c ond i t i on s
Ensures ( Result ( ) == Fora l l ( int , lambda i :

Imp l i e s ( i >= 0 and i < len ( t ex t ) , # ==>
t ex t [ i ] == text [ len ( t ex t ) − i − 1 ] ) )

The model is then prompted to generate the function body as well as any
necessary additional conditions necessary to finish the proof. The prompt in-
cludes explanations of some aspects of Nagini and Verus which LLMs tend to
struggle with and employ the few-shot strategy, showcasing an example of suc-
cessfully verified code. The complete prompt can be found in the Appendix(ref).
If the produced code verifies, it is accepted and passed to the user. Otherwise,
the verifier feedback is sent to the model for further revision of the suggestion;
this process is iterated over up to five times.

We ran the described experiment on Claude Sonnet 3.5 five times and com-
puted the number of unique problems, verified in at least one run. The model
successfully produced verified code for 67 problems (63%) in Nagini and 22 pro-
grams (40%) in Verus. Our results demonstrate that LLMs have the potential to
lower the barrier to formal verification by automating the generation of correct-
by-construction code. It is worth mentioning that state-of-the-art code genera-
tion tools are considering more complicated benchmarks, such as SWE-bench.
As a community, we should strive to develop similar datasets in verified settings,
which is an enormous task on its own, given the effort poured into HumanEval.
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Appendix

In this section, we provide prompts used to assess the ability of an LLM to gen-
erate verified code in Nagini. The prompts used for Verus have similar structure.
The system prompt is the following.

System prompt. You are an expert in a Python verification framework, Nagini.
You will be given tasks dealing with Python programs, including precise anno-
tations. Do not provide ANY explanations. Don’t include markdown backticks.
Respond only in Python code, nothing else. You respond only with code blocks.

The main prompt instructs the model on what its task is, as well as providing
additional reminders about the syntax of the language and an example of a
complete proof.

Main prompt. Rewrite the following Nagini code with implementations of some
functions missing. While rewriting it, ensure that it verifies. Include invariants
and assertions. Don’t remove any helper functions (they are marked with @Pure
annotation), they are there to help you. Prefer loops to recursion. Use helper
functions only in invariants, asserts and conditions (in ‘if ‘ or ‘while‘ conditions).
Don’t use helpers in the plain code. Do not change helper functions. Add code and
invariants to other functions. Ensure that the invariants are as comprehensive
as they can be. Even if you think some invariant is not totally necessary, better
add it than not. Don’t add any additional text comments, your response must
contain only program with invariants. Do not provide ANY explanations. Don’t
include markdown backticks. Respond only in Python code, nothing else.

You remember the following aspects of Nagini syntax:
1. Nagini DOES NOT SUPPORT some Python features as list compre-

hensions (k + 1 for k in range(5)), as double inequalities (a <= b <= c).
Instead of double inequalities it’s customary to use two separate inequalities
(a <= b and b <= c).

< 5 more aspects mentioned >
You might need to work with accumulating functions, such as sum, so here’s

an example of how to do that:
< Example program >
To help you, here’s a text description given to a person who wrote this pro-

gram:
< Text description >
The program:
< Function specification with preconditions and postconditions >
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If the verifier failed to check the code provided, its feedback is sent back to
the model with the following prompt.

Error prompt. The following errors occurred during verification:
< The list of errors >
Please fix the errors by adding, removing or modifying the implementation,

invariants or assertions and return the fixed program. You should not modify
any helper functions (annotated with @Pure), remember they are here to help
you with verification. Don’t add any additional text comments, your response
must contain only program with invariants. Do not provide ANY explanations.
Don’t include markdown backticks. Respond only in Python code, nothing else.
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