
Are LLMs Ready for Software Verification?

Abstract. Despite being able to produce reliable software, formal meth-
ods have hardly been adopted in mainstream programming. With the ad-
vent of large language models, it becomes more feasible to automatically
generate code along with verification guarantees. This research explores
whether LLMs can produce verified code from a textual description and a
partial specification. We were able to achieve 63% success rate in Nagini
and 40% in Verus on the HumanEval benchmark.

Software is notoriously difficult to get right, and the cost of errors can be as-
tronomical [8]. Formal methods aim to prevent avoidable mistakes by providing
a programmer with means to reason about a program and prove its correctness.
Such tools are especially valued in critical domains such as cryptography [17],
finance [2], and aerospace [14], where software failures can have severe conse-
quences. However, adopting formal verification requires significant additional
effort and expertise, which limits their use beyond high-stakes applications.

SMT-powered software verification systems such as Dafny and F* partially
automate proof search, but require using specialized languages for both programs
and verification primitives. This implies that to introduce verification into an
existing project, one needs to make a tough decision of adopting a new language,
which often comes with worse developer tools and a higher entrance barrier for
the engineers. One way to overcome this drawback is to use an intermediate
verification language such as Viper [11], with frontends in mainstream languages.
The last hurdle to clear is to make it easy for developers to specify properties of
their programs, as well as to prove that they hold.

In addition to a function signature and a body, verified code contains a speci-
fication of its behavior. It includes preconditions that describe assumptions held
before the evaluation of the function begins and guarantees ensured after execu-
tion, called postconditions. Sometimes these are enough to establish correctness,
but in the majority of non-trivial cases, additional statements should be proven,
such as loop invariants or lemmas.

Most prior research has explored generation of either complete proofs [16,12,4]
or their parts, such as invariants and assertions [10,13,7], for existing implemen-
tations. Other works produce postconditions [6] from textual descriptions, as well
as complete verified code in Dafny [15] and in Rust [1]. This approach has a pos-
sibility of misinterpreting the user intent and thus producing code which works
incorrectly despite being formally verified. In this project, we explore whether
large language models (LLMs) alone are capable of generating verified code in
mainstream languages from a text description and pre- and postconditions pro-
vided by a programmer. Specifically, we focus on Nagini [5] and Verus [9] — the
verifiers of subsets of Python and Rust.

2

In order to evaluate the abilities of the model, we created a benchmark based
on HumanEval [3]. We manually implemented a subset of the problems in Nagini1
and contributed in a collaborative effort to create it for Verus2. Notice that our
benchmarks contain fewer problems than the original dataset in Python, since
not every problem in it is well-suited for verification. For some of them, specifi-
cation duplicates the implementation (e.g. task 67), while unsupported language
features are needed for others (e.g. tasks 2 and 4). In total, our benchmarks in-
clude 106 handwritten, verified programs in Nagini and 55 in Verus, along with
accompanying textual descriptions.

In this extended abstract, we only focus on a scenario where the user describes
the problem in a natural language and supplies a function signature with pre-
and postconditions, as we view it as the most precise way to express the user
intent. An example of a query is “Checks if a given string is a palindrome” along
with the following code.

def i s_pal indrome (text : L i s t [int]) −> bool :
Requires (Acc (l i s t_pred (text))) # precond i t i on
Ensures (Acc (l i s t_pred (text))) # pos t c ond i t i on s
Ensures (Result () == Fora l l (int , lambda i :

Imp l i e s (i >= 0 and i < len (t ex t) , # ==>
t ex t [i] == text [len (t ex t) − i − 1]))

The model is then prompted to generate the function body as well as any
necessary additional conditions necessary to finish the proof. The prompt in-
cludes explanations of some aspects of Nagini and Verus which LLMs tend to
struggle with and employ the few-shot strategy, showcasing an example of suc-
cessfully verified code. The complete prompt can be found in the Appendix(ref).
If the produced code verifies, it is accepted and passed to the user. Otherwise,
the verifier feedback is sent to the model for further revision of the suggestion;
this process is iterated over up to five times.

We ran the described experiment on Claude Sonnet 3.5 five times and com-
puted the number of unique problems, verified in at least one run. The model
successfully produced verified code for 67 problems (63%) in Nagini and 22 pro-
grams (40%) in Verus. Our results demonstrate that LLMs have the potential to
lower the barrier to formal verification by automating the generation of correct-
by-construction code. It is worth mentioning that state-of-the-art code genera-
tion tools are considering more complicated benchmarks, such as SWE-bench.
As a community, we should strive to develop similar datasets in verified settings,
which is an enormous task on its own, given the effort poured into HumanEval.

References

1. Pranjal Aggarwal, Bryan Parno, and Sean Welleck. Alphaverus: Bootstrapping for-
mally verified code generation through self-improving translation and treefinement.

1 HumanEval dataset in Nagini: https://github.com/JetBrains-Research/
HumanEval-Nagini/

2 HumanEval-Verus: https://github.com/secure-foundations/human-eval-verus

https://github.com/JetBrains-Research/HumanEval-Nagini/
https://github.com/JetBrains-Research/HumanEval-Nagini/
https://github.com/secure-foundations/human-eval-verus

Are LLMs Ready for Software Verification? 3

arXiv preprint arXiv:2412.06176, 2024.
2. Franck Cassez, Joanne Fuller, and Aditya Asgaonkar. Formal verification of the

ethereum 2.0 beacon chain. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 167–182. Springer, 2022.

3. Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

4. Tianyu Chen, Shuai Lu, Shan Lu, Yeyun Gong, Chenyuan Yang, Xuheng Li,
Md Rakib Hossain Misu, Hao Yu, Nan Duan, Peng Cheng, et al. Automated
proof generation for rust code via self-evolution. arXiv preprint arXiv:2410.15756,
2024.

5. Marco Eilers and Peter Müller. Nagini: a static verifier for python. In Computer
Aided Verification: 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part I 30, pages 596–603. Springer, 2018.

6. Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K Lahiri.
Can large language models transform natural language intent into formal method
postconditions? Proceedings of the ACM on Software Engineering, 1(FSE):1889–
1912, 2024.

7. Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis,
Shuvendu K Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma.
Finding inductive loop invariants using large language models. arXiv preprint
arXiv:2311.07948, 2023.

8. Herb Krasner. The cost of poor software quality in the us: A 2022 report. Proc.
Consortium Inf. Softw. QualityTM (CISQTM), 2022.

9. Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe,
Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel. Verus: Verifying rust
programs using linear ghost types. Proceedings of the ACM on Programming Lan-
guages, 7(OOPSLA1):286–315, 2023.

10. Eric Mugnier, Emmanuel Anaya Gonzalez, Ranjit Jhala, Nadia Polikarpova, and
Yuanyuan Zhou. Laurel: Generating dafny assertions using large language models.
arXiv preprint arXiv:2405.16792, 2024.

11. Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A verification
infrastructure for permission-based reasoning. In Verification, Model Checking,
and Abstract Interpretation: 17th International Conference, VMCAI 2016, St. Pe-
tersburg, FL, USA, January 17-19, 2016. Proceedings 17, pages 41–62. Springer,
2016.

12. Gabriel Poesia, Chloe Loughridge, and Nada Amin. dafny-annotator: Ai-assisted
verification of dafny programs. arXiv preprint arXiv:2411.15143, 2024.

13. Álvaro F Silva, Alexandra Mendes, and João F Ferreira. Leveraging large lan-
guage models to boost dafny’s developers productivity. In Proceedings of the 2024
IEEE/ACM 12th International Conference on Formal Methods in Software Engi-
neering (FormaliSE), pages 138–142, 2024.

14. Jean Souyris. Industrial use of compcert on a safety-critical software prod-
uct. https: // projects. laas. fr/ IFSE/ FMF/ J3/ slides/ P05_ Jean_ Souyiris.
pdf , 2014.

15. Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover: Closed-loop
verifiable code generation. In International Symposium on AI Verification, pages
134–155. Springer, 2024.

https://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf
https://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf

4

16. Jianan Yao, Ziqiao Zhou, Weiteng Chen, and Weidong Cui. Leveraging
large language models for automated proof synthesis in rust. arXiv preprint
arXiv:2311.03739, 2023.

17. Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Ben-
jamin Beurdouche. Hacl*: A verified modern cryptographic library. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 1789–1806, 2017.

Appendix

In this section, we provide prompts used to assess the ability of an LLM to gen-
erate verified code in Nagini. The prompts used for Verus have similar structure.
The system prompt is the following.

System prompt. You are an expert in a Python verification framework, Nagini.
You will be given tasks dealing with Python programs, including precise anno-
tations. Do not provide ANY explanations. Don’t include markdown backticks.
Respond only in Python code, nothing else. You respond only with code blocks.

The main prompt instructs the model on what its task is, as well as providing
additional reminders about the syntax of the language and an example of a
complete proof.

Main prompt. Rewrite the following Nagini code with implementations of some
functions missing. While rewriting it, ensure that it verifies. Include invariants
and assertions. Don’t remove any helper functions (they are marked with @Pure
annotation), they are there to help you. Prefer loops to recursion. Use helper
functions only in invariants, asserts and conditions (in ‘if ‘ or ‘while‘ conditions).
Don’t use helpers in the plain code. Do not change helper functions. Add code and
invariants to other functions. Ensure that the invariants are as comprehensive
as they can be. Even if you think some invariant is not totally necessary, better
add it than not. Don’t add any additional text comments, your response must
contain only program with invariants. Do not provide ANY explanations. Don’t
include markdown backticks. Respond only in Python code, nothing else.

You remember the following aspects of Nagini syntax:
1. Nagini DOES NOT SUPPORT some Python features as list compre-

hensions (k + 1 for k in range(5)), as double inequalities (a <= b <= c).
Instead of double inequalities it’s customary to use two separate inequalities
(a <= b and b <= c).

< 5 more aspects mentioned >
You might need to work with accumulating functions, such as sum, so here’s

an example of how to do that:
< Example program >
To help you, here’s a text description given to a person who wrote this pro-

gram:
< Text description >
The program:
< Function specification with preconditions and postconditions >

Are LLMs Ready for Software Verification? 5

If the verifier failed to check the code provided, its feedback is sent back to
the model with the following prompt.

Error prompt. The following errors occurred during verification:
< The list of errors >
Please fix the errors by adding, removing or modifying the implementation,

invariants or assertions and return the fixed program. You should not modify
any helper functions (annotated with @Pure), remember they are here to help
you with verification. Don’t add any additional text comments, your response
must contain only program with invariants. Do not provide ANY explanations.
Don’t include markdown backticks. Respond only in Python code, nothing else.

	Are LLMs Ready for Software Verification?

