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Useful interactions between Automated theorem proving (ATP) and Ma-
chine learning (ML), more specifically Large Language Models, (LLMs) would
benefit from an abstract logical framework for proofs and validity. We pro-
pose the use of the theory of Institutions, an abstract model-theoretic tool for
specification and programming.[8]

Lean and Metamath are proof assistants that rely on distinct mathematical-
logical foundations, i.e. specific Institutions. Lean is built on dependent type
theory, which enables the construction of highly structured mathematical ob-
jects and proofs. On the other hand, Metamath, centers around its main
database, the Metamath Proof Explorer, which is based on first-order logic.
Additionally, other Metamath databases explore alternative systems, including
intuitionistic logic, Quine’s New Foundations, and higher-order logic. Metamath
verifies proofs using a simple substitution rule by focusing on the correctness
of substitutions, without assuming a specific logic system. Hence we need a
logic-independent approach to enhance the development of semantics for such
tools. While Metamath and Lean are powerful tools, they have certain limita-
tions that highlight the need for a more advanced logic-independent framework,
such as Institutions.

Institutions form the core of categorical abstract model theory, which for-
malizes the notion of a logical system by defining its syntax, semantics, and the
satisfaction relation between them. They provide a common framework that
moves beyond the details of specific logics, which helps in studying their con-
nections. An Institution consists of four main components: (a) a collection of
signatures (serving as vocabularies for forming sentences in a logical system) and
signature morphisms (b) a set of sentences for each signature, which represents
the syntax of the logic (c) a set of models for each signature, which provides
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the meaning or semantics of the sentences and (d) a satisfaction relation that
connects the models with the sentences, indicating which sentences are true in
which models. Institutions extends Tarski’s semantic definition of truth [7] and
generalizes Barwise’s Translation Axiom [6]. Institutions highlight the fact that
truth is invariant under change of notation. The key aspect of any logical sys-
tem is the satisfaction relationship between its syntax (i.e., its sentences) and its
semantics (i.e., its models). While this relationship assumes a fixed vocabulary,
Institutions provide the flexibility to work with multiple vocabularies simulta-
neously. This ability allows for translations between different logical systems,
enabling one to be interpreted within another. A main result from Institution
Theory gives the conditions under which you can translate proofs from one
theorem prover to another.

Systems like Lean and Metamath that demonstrate how LLMs can be uti-
lized to assist in constructing formal proofs, can clearly benefit from the Institu-
tional approach. The main methodological implications for providing a general
framework for ML and LLMs are:

• The relativistic view

• The translation of problems and solutions

• The multi-language aspect

In our presentation we will demonstrate how Institutions can be used to ap-
proach the semantics of systems like Lean and Metamath and the benefits of
such an approach.
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