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Recent LLMs have demonstrated impressive ability in proving theorems using
interactive theorem provers (ITP) such as Isabelle [1,2], Lean [3,4], or Rocq [5,?].
Unfortunately, fundamental differences between proof systems have resulted in
diverse datasets, which makes the comparison between techniques developed for
different proof assistant particularly challenging.

However, LLMs are particularly well fit for translating between programming
languages that have extensive resources in common [6]. In this work, we explore
whether state-of-the-art LLMs can be leveraged to automatically translate a
dataset of formal theorems from one proof assistant to another. We focus on
MiniF2F [7,8], a dataset of high-school-level problems that has already been
formalized in Lean, Isabelle/HOL, and MetaMath. This dataset is a popular
benchmark for evaluating ML-based automated proof techniques [9,10,11,12].
Despite previous attempts, this dataset has not yet been formalized in Rocq.3

In this work, we conduct an experiment using state-of-the-art LLMs to
translate MiniF2F into Rocq. Our approach successfully translated 478 out of
488 theorems.

Methodology The translation task focuses on generating a Rocq theorem based
on three sources: a natural language description, the Lean formalization, and the
Isabelle formalization. Only theorem statements are considered, proofs, whether
described in natural language or formalized in Lean or Isabelle, are deliberately
ignored. For each theorem we check that the result of the translation is a
valid Rocq statement using Pétanque [13], a machine to machine interactive
environment for Rocq.

We conducted our experiment in 3 stages of increasing complexity, from basic
one-shot prompting to multi-turn conversations that incorporate feedback from
unsuccessful attempts. At each stage, we perform multiple rounds of translation
using increasingly advanced models. After each round, we verify that the generated
codes matches the informal descriptions and the existing formalizations. To limit
the costs, the next round only focuses on theorems that remains untranslated.

– Stage 1: One-shot prompting. We prompt the model with the natural lan-
guage description of the theorem and the existing formalizations (Lean and
Isabelle/HOL). In this stage, we used GPT-4o mini, Claude 3.5 Sonnet, o1
mini, and o1.

3 https://github.com/openai/miniF2F/issues/66

https://github.com/openai/miniF2F/issues/66
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Fig. 1. Translations of MiniF2F to Rocq, experimental results. For stages 2 and 3 we
indicate the number of attempts in parenthesis.

– Stage 2: Multi-turn with errors. The model can interact up to three times
with the theorem provers. Each new try incorporate the previous unsuccessful
attempts and the error messages. In this stage we used Claude 3.5 Sonnet
and o1 mini.

– Stage 3: Refined prompt. We focus on Claude 3.5 Sonnet. The prompt is
refined to address common errors related to complex numbers, finite sums or
products, prime numbers, the floor function, and typing issues. We increase
the number of attempts to 6, and then 24.

Results The cumulative results of each round are presented in Figure 1. We
observe that with basic one-shot prompting, we translate 68% of the dataset
requiring the use of the most advanced model o1. Stages 2 and 3 illustrate that the
LLM can leverage successfully previous attempts. At the end of our experiments
only 10 theorems (2% of the dataset) remains untranslated.

To validate our results, we asked an expert to compare the Rocq translations
with the original Lean formalizations of a random sample of 50 theorems. The
expert found 6 discrepancies, but after inspection, the Rocq translation is also a
correct formalization of the informal natural languages description of the problem.

Discussion We successfully used state-of-the-art LLMs to translate the MiniF2F
dataset to Rocq. However, while the translations are valid Rocq statements, it is
possible that the resulting formalization makes the proof more challenging than
in the other proof assistants. We leave for future work a complete audit of all
the theorems by experts Rocq users to mitigate this issue, but we believe that
our work is a already a significant step forward.
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