
Correct by Construction Machine Learning

Artjoms Šinkarovs[0000−0003−3292−2985]

Southampton University, UK
a.sinkarovs@soton.ac.uk

Abstract. In this talk I present how theorem provers can be used to
define machine learning applications together with correctness invariants
of interest. This approach can be seen as a pathway towards encoding
provably safe AI.

1 Introduction

With increased use of machine learning in safety-critical systems, there is a high
demand in guaranteeing correctness of these systems. Unfortunately, the notion
of correctness varies depending on the community. For example, machine learn-
ing experts may focus on minimising an average error when running applications
on certain sets of inputs. Mathematicians may interpret machine learning ap-
plications as functions in vector spaces and require certain constraints on them.
Programmers may be interested in ensuring that machine learning applications
do not crash or throw exceptions at runtime.

While all of the mentioned notions are of high importance, we rarely see
machine learning systems that make it possible to state and/or prove correct-
ness properties about the actual applications. One of the reasons is that most
of machine learning frameworks prioritise functionality over correctness. That
is, one can quickly build applications, but there is no guarantee that they pro-
duce meaningful results. This means that all correctness guarantees about such
applications have to be provided extrinsically.

There are several issues with extrinsic verification. First of all, there are signif-
icant limitations of what can be achieved automatically. For a given application
written in weakly-typed languages such as C or Python, some properties are
just undecidable. Secondly, extrinsic verification decouples the application from
the correctness proof, meaning that one can run applications even if correctness
proofs are incomplete or missing. Finally, each notion of correctness mentioned
above is likely to require a separate verifier.

An alternative approach is to use intrinsic verification, defining machine
learning applications together with correctness properties of interest. In partic-
ular, we can define machine learning applications within theorem provers, which
makes it possible to attach arbitrary properties to the application. Such an ap-
proach guarantees that: (i) all properties of interest can be stated within a single
framework; (ii) specifications are executable; (iii) correctness proofs cannot be
decoupled from applications.



2 A. Šinkarovs

The main challenges of intrinsic verification are: (i) the entire application
(including frameworks and libraries) have to be (re-)implemented within a theo-
rem prover; (ii) a programmer becomes responsible for supplying all the required
correctness proofs; (iii) there has to be a mechanism on running the verified code
efficiently.

In the talk I will demonstrate that many of these challenges can be addressed
in a reasonably straight-forward way. Concretely, I will present the proposed
intrinsic approach within Agda — a theorem prover that is based on dependent
types. I will use a simple convolutional neural network as a running example.
I will demonstrate that with a reasonably small effort we can obtain a correct-
by-construction implementation of the network that performs on par with state
of the art competitors. I will explain the difficulties of the approach and further
avenues that this feasibility study opens.

2 Technical Details

In this section I make an overview of the implementation, explaining how some
of the above-mentioned challenges are addressed.

One of the key ingredient in any machine learning framework is tensor (in
the machine learning sense of the word). In dependently-typed systems a type
of a tensor can be indexed by its shape, which guarantees that: (i) all selections
into tensors are within bounds; (ii) we can explain precisely how tensor shapes
are related in the given operation; (iii) we have the ability to abstract over
shapes resulting in very generic definitions, e.g. we can have a single definition
of convolution for tensors of any rank.

Basic tensor operations are defined in less than a hundred lines of code with
no explicit proofs. One operation that requires more work is a generalised convo-
lution. The reason for this is that the shape of the output tensor depends on the
shapes of the input ones in a non-trivial way. With tensor operations in-place the
forward part of our example network can be defined in just 5 lines of code, which
is comparable to machine-learning frameworks such as Tensorflow or PyTorch.

Another important component of machine learning frameworks is automatic
differentiation which simplifies definition of training phases. This step is also
implemented in Agda by defining a deeply-embedded DSL that wraps tensor
operations. The implementation guarantees that tensor shapes are respected
and variables within the DSL are well-typed and well-scoped. The core function
that computes derivatives is compact taking about 30 lines of code.

The final step of the process is translation of the DSL expressions into high-
performance languages. In particular, I can translate the DSL programs into
C, SaC or Futhark. The latter generates the code that runs on GPUs. For our
example, the runtime of the generated code is comparable with Tensorflow or
Pytorch. An important step prior translation to high-performance languages is
an optimisation of DSL expressions. This step is also implemented in Agda in
semantically-preserving way, guaranteeing that optimisations do not change the
value computed by the given expression.


