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Abstract. Recent advances in the control of large language models via
probabilistic programming allow us to imagine new workflows in theorem
proving and formal mathematics. In order to spark a broader conversation
about the role of probabilistic reasoning, we propose several speculative
approaches: a reweighted wake-sleep algorithm for improving model quality,
an involutive approach to autoformalization and autoinformalization, and
a coarse-to-fine approach to proof synthesis.

The controlled generation of large language model (LLM) output has been
successfully framed in terms of a probabilistic inference problem, specifically
the task of sampling from the posterior distributions of an LLM conditioned on
various constraints. These constraints can be hard (e.g., ensuring code adheres to
a formal grammar, or that a proof is verified by a theorem prover) or soft (e.g.,
accuracy as scored by another LLM, or likelihoods from a probabilistic model
with domain knowledge). By using conditional probabilities of LLM completions
(see Figure 1), probabilistic programming and sequential Monte Carlo (SMC)
techniques have enabled systems like LLaMPL [8] and GenParse [9] that generate
asymptotically correct samples under these diverse constraints.

Controlled generation via probabilistic reasoning opens the possibility of
new workflows for autoformalization (translating natural-language theorems and
proofs into statements that could be formally checked by a theorem prover)
and autoinformalization (generating natural language explanations from formal
theorem statements and proofs).

∀(ε : R), ε > 0 → ∃(δ : R), δ > 0 ∧ ∀(x : R),
|x− c| < δ → |f(x)− f(c)| < ε

∀(ε : R), ε > 0 → ∃(δ : R), δ > 0 ∧ ∀(x : R),

|x− c| < δ ↔ |f(x)− f(c)| < ε

log pDS(y | “An English statement equivalent to x0 is”)
= −45.99584197998047

log pDS(y | “An English statement equivalent to x1 is”)
= −46.35643768310547

A function f is such that small changes in
input lead to small changes in output.
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Fig. 1. Conditional probabilities of LLM completions can identify better formalizations:
Two candidate formalizations x0, x1 in Lean are judged based on the conditional log
probabilities assigned to an informal statement y by a distillation [1] of DeepSeek R1 [2].
In this case, pDS(y|x0) > pDS(y|x1), identifying x0 as a more correct formalization of y.
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Understanding an informal proof involves inferring the author’s intent regard-
ing choice of definitions, domains of variables, implicit assumptions or transfor-
mations, and references or (counter)examples that fill in argument details. Such
inferences exploit signals about the likely meaning of the proof, and draw on
both hard constraints (like typechecking) and softer signals (such as avoiding
interpretations that make a theorem trivial).

Our prior techniques [8, 9] allow augmenting and steering of LLM-guided
code generation using probabilistic programs that condition LLM generation on
such hard and soft signals. Although high-quality generation using these signals
can be expensive, generated examples (or entire traces of the reasoning process
induced by the SMC inference algorithm we use) can serve as training data, in a
reinforcement-learning loop, to train models that have this sort of probabilistic
reasoning “built in.” When such signals are unavailable to the SMC proposal,
they can still be used to guide inference via twist functions [9, 11].

Figure 2 illustrates three potential workflows for auto(in)formalization using
probabilistically constrained LLMs, which we hope will spark further exploration
of the use of probabilistic reasoning in theorem proving and formal mathemat-
ics. These workflows also suggest questions such as how fine-tuning based on
constrained outputs (2a) affects scaling laws for pre- vs. post-training, how prob-
abilistic teachers and learners (2b) can improve distillation, and how hierarchical
probabilistic refinement (2c) can dovetail with chain-of-thought techniques.

(a)
probabilistically
steered LLM

The square root of 2 is irrational.
theorem irrational_sqrt_two Irrational (

√
2) := by

simpa using Nat.prime_two.irrational_sqrt

constrained generation of parallel texts

use examples with traces to fine-tune

(b)
Let D be a compact subset of R and
suppose f : D → R is continuous.
Then f(D) is compact.

theorem continuous_compact_support
(D : Set R) (f : R → R)
(hD : IsCompact D) (hf : ContinuousOn f D) :
IsCompact (Set.image f D) := by sorry

autoformalize

autoinformalize

⟲ ≈ ⟳ ≈ id

(c) – AMC12 2000: P11
– Two non-zero real numbers, a and b, satisfy ab = a - b.
– One possible value of a/b + b/a - ab is 2.

theorem amc12_2000_p11
– Two non-zero real numbers, a and b, satisfy ab = a - b.
(a b : R) (h0 : a ̸= 0 ∧ b ̸= 0) (h1 : a * b = a - b) :

– One possible value of a/b + b/a - ab is 2.
a / b + b / a - a * b = 2 :=

by sorry

theorem amc12_2000_p11
– Two non-zero real numbers, a and b, satisfy ab = a - b.
(a b : R) (h0 : a ̸= 0 ∧ b ̸= 0) (h1 : a * b = a - b) :

– One possible value of a/b + b/a - ab is 2.
a / b + b / a - a * b = 2 := by

field_simp [h0.1, h0.2]
simp only [h1]
sorry

theorem amc12_2000_p11
– Two non-zero real numbers, a and b, satisfy ab = a - b.
(a b : R) (h0 : a ̸= 0 ∧ b ̸= 0) (h1 : a * b = a - b) :

– One possible value of a/b + b/a - ab is 2.
a / b + b / a - a * b = 2 :=

begin
field simp [h0.1, h0.2],
simp only [h1, mul comm, mul sub],
ring,

end

autoformalize
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probabilistically

refine

. . .

Fig. 2. Three proposed workflows using probabilistic reasoning, illustrated with Lean code
examples [3, 6, 10, 12]: (a) Reweighted wake-sleep algorithm: A model can improve
itself by searching during training for high-quality labeled examples that are then used
for fine-tuning, better leveraging the signal provided by methods that use proof search
results as training data [7]. (b) Involutive approach to auto(in)formalization:
Using mutual recursion, informalization is framed as “writing English that an autofor-
malizer would likely translate correctly,” and formalization as “writing Lean that an
autoinformalizer would likely agree matches the informal statement.” (c) Coarse-to-
fine proof synthesis: Proof synthesis as an instance of Coarse-to-Fine probabilistic
program induction [4, 5]; a proof’s basic structure is first formalized at a coarse level
with high entropy and then refined, guided by probabilistic inferences about its likely
fidelity to a coarsening of the informal proof.
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