
Proof By Abduction in Isabelle/HOL

Yutaka Nagashima1 and Daniel Sebastian Goc

Czech Academy of Sciences
nagashima@cs.cas.cz

Abstract. When proving an inductive problem, we often prove auxil-
iary lemmas that are useful for proving the original problem. If these
auxiliary lemmas themselves are challenging, we must introduce more
lemmas to prove these lemmas. To automate such multi-step conjec-
turing, we developed Abduction Prover. Given a proof goal, Abduction
Prover conjectures a series of lemmas and attempts to prove the original
goal using these lemmas. Our working prototype of Abduction Prover
for Isabelle/HOL is publicly available on GitHub.

All major theorem provers for higher-order logics offer tools called tactics.
Tactics are designed to transform proof goals into easier formats. Users apply
suitable tactics with certain arguments to proof goals until the tactics solve their
proof goals completely.

When proving challenging statements, experienced users often introduce aux-
iliary lemmas explicitly and use these lemmas to prove the final goals. Many
believe that this approach is superior to developing long sequences of tactics:
these lemmas make the resulting proof scripts more declarative and readable,
and they can be utilized to tackle other challenging problems. If the auxiliary
lemmas themselves are challenging, more conjectures should be introduced that
are useful for proving the challenging lemmas.

In this abstract, we introduce Abduction Prover, a framework designed to
search for useful conjectures recursively to prove the goal until the proof is
completed using these conjectures. The overall workflow of Abduction Prover is
shown in Algorithm 1 in the Appendix, although some definitions are omitted
due to space restrictions. Given a proof goal, this algorithm builds its proof and
auxiliary lemmas by expanding a rooted directed graph.

We call this graph an abduction graph, as abductive reasoning is executed
on this graph to identify conjectures useful for proving the original goal, which
appears as the root node. The graph consists of two kinds of nodes (and-nodes
and or-nodes) and two kinds of edges (labeled edges and unlabeled edges). Each
node represents a proof goal.

Intuitively, or-nodes represent choices, while and-nodes represent obligations.
When an or-node points to multiple and-nodes, it means the or-node can be
proven if one of the and-nodes directly pointed to by the or-node can be proven.
On the other hand, when an and-node points to multiple or-nodes, it means the
and-node can be proven if all the or-nodes directly pointed to by the and-node
are proven.



2 Y. Nagashima et al.

Goal

lemma-A subgoal-B1 ∧ subgoal-B2 lemma-C

subgoal-B1 subgoal-B2 lemma-C

conjecturing-A tactic-B conjecturing-C

Fig. 1: An Example Abduction Graph.

Fig. 1 displays an example of an abduction graph. This graph demonstrates
that Algorithm 1 has already worked on the root node twice to conjecture aux-
iliary lemmas (conjecturing-A and conjecturing-B) and once to apply a tactic
(tactic-B). Nodes encircled by single lines represent or-nodes, while nodes en-
closed by double lines signify and-nodes. For example, the root node points to
two and-nodes via solid lines, which means that to prove the goal, only one of
the two and-nodes must be proven.

This figure shows that Algorithm 1 has produced two conjectures by explicit
conjecturing: lemma-A and lemma-C, while it has also produced another conjec-
ture (subgoal-B1 ∧ subgoal-B2) by applying a tactic. The solid edge connecting
the root to lemma-C should be interpreted as follows: Algorithm 1 confirmed
that we can prove the root node using lemma-C as assumption. On the other
hand, the dashed edge from the root to lemma-A indicates that Algorithm 1
conjectured lemma-A but Algorithm 1 failed to prove the root using lemma-A
as assumption. Since we do not know if lemma-A is useful to prove the root,
Algorithm 1 does not connect lemma-A to the root to keep the size of the graph
small.

In addition to explicit conjecturing, Algorithm 1 integrates tactic applications
as implicit conjecturing. For example, Fig. 1 indicates that the root node can be
reduced into two subgoals (subgoal-B1 and subgoal-B2) by applying tactic-B,
and Algorithm 1 treats the application of tactic-B as equivalent to conjectur-
ing two lemmas, subgoal-B1 and subgoal-B2. In general, one tactic application
can return multiple subgoals, which Algorithm 1 groups into a single and-node.
Then, from such an and-node, Algorithm 1 produces or-nodes, each of which
corresponds to a subgoal in the parent and-node.

We call Algorithm 1 Abduction Prover because it continually conjectures
new auxiliary lemmas for the leaf or-nodes recursively in each iteration until
enough lemmas have been proven to establish the root node. Furthermore, we
call the underlying data structure an abduction graph rather than an abduction
tree because, in general, Algorithm 1 may produce the same conjectures multiple
times from different nodes.

Our working prototype of Abduction Prover for Isabelle2023 [3] is available
for public access on GitHub [1] and its demo is available on YouTube [2]. We
also added two screenshots from the YouTube video in Appendix.



Proof By Abduction in Isabelle/HOL 3

Appendix

Algorithm 1 Abduction Prover
1: graph← set_root goal
2: depth← 1
3: while depth ≤ Limit ∧ ¬ proved graph do
4: depth← depth+ 1
5: nodes ← get_active_nodes graph
6: fold expand_node nodes graph
7: end while
8: show graph

Fig. 2: A screenshot from the demo video. The prove command invoked the
Abduction Prover, which proved the final goal, ((double x) = (t2 x x)), as
lemma original_goal_5480488 by creating and proving two auxiliary lemmas.



4 Y. Nagashima et al.

Fig. 3: A screenshot from the demo video. The Abduction Prover proved the
given goal by creating and proving 13 lemmas.

References

1. https://github.com/data61/PSL/releases/tag/v0.2.7-alpha,
https://github.com/data61/PSL/releases/tag/v0.2.7-alpha

2. https://youtu.be/rXU-lJxP_GI, https://youtu.be/rXU-lJxP_GI
3. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - a proof assistant for higher-

order logic. Springer (2002)


