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1 AI and Mathematics

Modern AI has a history going back about three quarters of a century. The
field can be broadly split into symbolic and sub-symbolic approaches on the one
hand, and into reasoning vs. learning on the other hand. The core distinction
between symbolic and sub-symbolic systems is that symbolic systems represent
knowledge as collections of specific, discrete, often logic-based objects, while sub-
symbolic systems represent knowledge distributed in a large, usually numerical
set of parameters.

Both symbolic and sub-symbolic approaches have produced impressive ma-
chine learning methods. On the symbolic side we find e.g. methods based on
decision trees, similarity and analogy, and evolutionary methods. On the sub-
symbolic side, the most prominent approach is that of artificial neural networks.
These typically consist of layers of simple neurons that are interconnected and
pass numerical values from one layer to the next to produce an output vector
from an input vector. They are trained via error back-propagation. These tech-
niques have been known since the 1970s, but in recent years the combination
of much more powerful hardware, much larger datasets, and some changes in
network layout and activation functions has inspired and enabled the develop-
ment of deep neural networks. These typically have many more layers than older
systems, they have a more complex architecture, interleaving fully connected
layers, convolution layers, pooling layers and others. Another big change is that
they typically work on much more raw input data and rely less on predefined
features. The enormous success of these deep neural networks has fueled the
recent successes of artificial intelligence.

In the field of mathematics, symbolic systems have a long history. In particu-
lar automated theorem provers (ATP) and computer algebra systems use sound
symbolic inference to perform reasoning steps and provide derivations [13] that
are correct by construction (at least in the ideal case) and that can be verified
a-posteriori to provide extremely reliable results. However, these systems have
weaknesses. First, knowledge acquisition is largely based on manual encoding of
mathematical theories - a process that is expensive and error-prone. Secondly,
the space of possible logical derivations is to large that it is hard to find the
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interesting reasoning steps, in particular with respect to the task of proving a
given conjecture.

On the sub-symbolic side, the combination of deep neural networks with word
vector encodings has enabled the creation of large language models (LLMs) -
basically neural networks that learn the conditional probability of the next word
(more precisely token) of a text based on a given context constructed both from
an initial prompt and the text generated so far. Such models, trained on internet-
sized datasets and applied recursively to their own output, have demonstrated
extremely impressive capabilities. They are able to routinely perform language
tasks such as summarizing, translation, and reformulation, and they appear as
quite intelligent conversation partners. In particular, they apparently can solve
mathematical and logical puzzles, which hase lead to the idea that such systems
might also be useful formal mathematical reasoning.

However, despite their success in conversational settings, I believe that plain
large language models will be inherently unable to reliably generate new mathe-
matical results - essentially because they learn models of language and text, not
models of real or mathematical structures. As such, they are limited to reproduce
existing ideas (even if in many variations) over existing structures. A large part
of mathematics, on the other hand, is the discovery of abstract properties of new
structures. While LLMs have been able to apparently solve many logical puzzles,
the success seems to drastically drop off if such puzzles are reworded with new
vocabulary, or if confounding variables are added [6]. Moreover, LLMs tend to
hallucinate, basically producing intelligent looking but completely counterfactual
or nonsensical text streams. Such hallucinations may be unavoidable [1].

2 Hybrid Architectures for Mathematical AI

I believe that scalable, usable mathematical AI systems must be based on hybrid
architectures. The core collection of mathematical knowledge will be encoded in
a formal logic, most likely variants of higher-order predicate logic with large
first-order subsets. The integrity of this knowledge base will be supported by
automated theorem provers such as E [12, 11, 16, 17] and Vampire [5], which will
both help to maintain the consistency of this knowledge as new domains are
added (as e.g. in [14]), and provide ways to derive new theorems and flesh out
new theories. Interactive systems such as e.g. Lean [7] 1or Isabelle [8] will provide
the user interface for human mathematicians.

Various machine learning method and classical optimisation approaches will
help ATPs to deal with the complexities of the search space, as already demon-
strated by several systems [10, 2, 4, 3, 15, 9].

I see the role of LLM-based approaches not in executing actual reasoning,
but as tools to facilitate the formalisation of existing mathematical literature
and to support the generation of human-readable proofs.
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