
Neuro-Symbolic Lemma Conjecturing

Yousef Alhessi1, Sólrún Halla Einarsdóttir2,3, Emily First1, George
Granberry2,3, Moa Johansson2,3, and Nicholas Smallbone2,3

1 University of California, San Diego, USA
2 Chalmers University of Technology, Gothenburg, Sweden

3 University of Gothenburg, Gothenburg, Sweden

Abstract. We present ongoing work in combining Large Language Mod-
els (LLMs) and symbolic tools for lemma conjecturing. Our aim is to
develop a neuro-symbolic lemma conjecturing tool leveraging the best of
both symbolic and neural methods.

Keywords: Lemma conjecturing · Large Language Models · Theory ex-
ploration

1 Introduction

Theory exploration is the automatic discovery of interesting conjectures and lem-
mas about mathematical objects. Previously, we have developed symbolic tools
for theory exploration [8, 3] which have been used to successfully discover, for
example, lemmas needed in automated (co)-inductive provers [5, 2, 1]. However,
these tools are limited in the shape and size of lemmas they can generate and
do not scale well to larger sets of inputs. In light of the recent impressive results
achieved by Large Language Models (LLMs) in various text-generation tasks, we
examine how LLMs can be used for lemma generation in a theory exploration
setting, and how they can be combined with symbolic tools for optimal results.

LLMs are remarkably good at learning patterns from their training data and
generating output that fits a similar pattern for a given query context. Therefore,
they can potentially be trained to generate lemmas similar to those previously
seen for mathematical definitions analogous to those given, if exposed to the right
kind of training data. A weakness of neural models such as LLMs is that they
may be prone to generating repetitive or redundant lemmas and fail to discover
more novel and useful lemmas. Another flaw that must be addressed when using
LLMs in this context is the fact that there are no correctness guarantees on
the LLM’s output, so the generated lemmas may simply be false. Both of these
challenges have been encountered in previous work on neural conjecturing [9, 7,
6]. Unlike neural methods, symbolic methods can be designed and programmed
to generate only true statements and avoid repetition and redundancy. However,
symbolic methods will only generate lemmas that fit a predefined specification
from within a specified search space, and tend to scale poorly to a larger search
space.



2 Y. Alhessi et al.

To address these shortcomings, we propose a neuro-symbolic lemma conjec-
turing tool with the following implementation: An LLM is trained to generate
lemma templates that describe the shape of a lemma rather than generating
complete lemmas. In these lemma templates the function symbols have been ab-
stracted away and replaced by holes. For example, the template ?F (?F (X,Y ), Z) =
?F (X, ?F (Y,Z)) describes an associative binary function ?F . Symbolic methods
are used to fill in the holes with function symbols in the exploration scope to
form well-typed conjectures. In this way, we leverage the best of both neural and
symbolic methods, using the LLM to capture the intuition and suggest appro-
priate patterns and symbolic methods to ensure correctness and novelty. As far
as we are aware, this is the first work focusing on neuro-symbolic conjecturing
of novel lemmas.

2 Ongoing Experiments

We set out to answer the following research questions:
RQ1 Can an LLM be trained to generate useful lemmas for a given set of func-

tion definitions?
RQ2 Can an LLM be trained to generate useful lemma templates to be filled in

symbolically using a tool like RoughSpec?
RQ3 What level of contextual information is useful for an LLM to generate

lemmas and lemma templates?

Generation tasks To find answers to the questions above, we set up our pipeline
to perform the following lemma generation tasks:
1. Generate one or more lemmas for a given set of functions. We fine-tuned our

model on training data consisting of Isabelle functions and their definitions
as inputs, and lemma statements concerning those functions as outputs.

2. Generate one or more lemma templates for a given set of functions. We
removed function names from the lemma statements in the training data,
leaving a more abstract lemma template.

3. Repeat 1. and 2. above but give the model more context. Our prior work
Baldur [4] showed that LLMs, when generating a proof of a given theorem,
benefit from the Isabelle file context, which includes related theorems and
their proofs. Thus, contextual information such as theorems about functions
of interest could help the LLM generate templates.

Evaluation tasks For each of the lemma generation methods described above,
we evaluate the generated lemmas in the following manner:
1. Syntax correctness: Is this valid Isabelle code/a valid template according to

our template grammar?
2. Counterexample check: Can a counterexample-finder disprove this conjecture

by finding a counterexample?
3. Proof: Can we prove the lemma using automated proof tactics? Is it a trivial

consequence of previously proved facts, or does it require a more complicated
proof?



Neuro-Symbolic Lemma Conjecturing 3

References

1. Einarsdóttir, S.H., Hajdu, M., Johansson, M., Smallbone, N., Suda, M.: Lemma
discovery and strategies for automated induction. In: Benzmüller, C., Heule, M.J.,
Schmidt, R.A. (eds.) Automated Reasoning. pp. 214–232. Springer Nature Switzer-
land, Cham (2024)

2. Einarsdóttir, S.H., Johansson, M., Pohjola, J.Å.: Into the infinite - theory ex-
ploration for coinduction. In: Proceedings of AISC 2018. pp. 70–86 (01 2018).
https://doi.org/10.1007/978-3-319-99957-9_5

3. Einarsdóttir, S.H., Smallbone, N., Johansson, M.: Template-based theory ex-
ploration: Discovering properties of functional programs by testing. In: Pro-
ceedings of the 32nd Symposium on Implementation and Application of
Functional Languages. p. 67–78. IFL ’20, Association for Computing Ma-
chinery, New York, NY, USA (2021). https://doi.org/10.1145/3462172.3462192,
https://doi.org/10.1145/3462172.3462192

4. First, E., Rabe, M., Ringer, T., Brun, Y.: Baldur: Whole-Proof Generation and Re-
pair with Large Language Models. In: Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. p. 1229–1241. ESEC/FSE 2023, Association for Computing Machin-
ery, New York, NY, USA (Nov 2023). https://doi.org/10.1145/3611643.3616243,
https://doi.org/10.1145/3611643.3616243

5. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: Integrating theory
exploration in a proof assistant. In: Proceedings of CICM. pp. 108–122. Springer
(2014)

6. Johansson, M., Smallbone, N.: Exploring mathematical conjecturing with large lan-
guage models. In: 17th International Workshop on Neural-Symbolic Learning and
Reasoning, NeSy 2023 (2023)

7. Rabe, M.N., Lee, D., Bansal, K., Szegedy, C.: Mathematical reasoning via self-
supervised skip-tree training. In: Proceedings of ICLR (2021)

8. Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick specifications for
the busy programmer. Journal of Functional Programming 27 (2017)

9. Urban, J., Jakubův, J.: First neural conjecturing datasets and experiments. In:
Proceedings of CICM (2020). https://doi.org/10.1007/978-3-030-53518-6_24


