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Introduction

The Andrews-Curtis Conjecture (ACC) [1], well-known in combinatorial group
theory and topology, asserts that any balanced presentation of the trivial group
can be reduced to a trivial presentation using a sequence of basic transforma-
tions. However, the conjecture is widely believed to be false, with infinitely many
potential counterexamples for which no simplifications are known. This leads to
a computationally challenging algorithmic problem: given a balanced presenta-
tion of the trivial group, determine a sequence of transformations that simpli-
fies it. Computational approaches to this problem include generic search algo-
rithms [4, 12], genetic algorithms [10, 13], techniques from computational group
theory [3, 11], and, more recently, reinforcement learning [12]. In [5, 6, 7], we
introduced an approach that utilizes automated deduction in first-order logic to
search for AC trivializations. This method has proven to be highly competitive:
it successfully simplified all known presentations that could be simplified by any
other method (achieving a form of ”relative completeness”); it discovered new
simplifications previously unknown [6, 8]; and it demonstrated high efficiency,
producing simplifications of thousands steps [8, 9].

Automated theorem proving for ACC and Machine Learning

Recently, machine learning—specifically reinforcement learning—has been suc-
cessfully applied to the search for AC simplifications [12]. We believe that our
automated reasoning approach to AC simplification search presents new oppor-
tunities for integration with machine learning (ML) methods, including, but not
limited to, Large Language Models (LLMs).

Balanced presentations of trivial groups as a playground for learning
guided theorem proving. There are several infinite parametric families of
balanced group presentations representing trivial groups. Notably these include
the Akbulut-Kirby family AKn = ⟨a, b | anb−(n+1), abab−1a−1b−1⟩, n ≥ 2 the
Miller-Schupp family MSn(w) = ⟨a, b | a−1bnab−(n+1), a−1w⟩, where n ≥ 1; and
w is a word which has exponent sum 0 on a; and Gordon family Gn,m,p,q = ⟨a, b |
a−1[an, bm], b−1[bp, aq]⟩, where n,m, p, q ∈ Z and [x, y] = xyx−1y−1. While AC-
simplifiability for some values of parameters is known in each family, the simplifi-
ability of all presentations in any of the AK, MS and G families remains largely



open. Thus, one can generate numerous automated theorem proving tasks for
a large set of presentations within any given family, apply automated theorem
proving to search for simplifications, and then use both successful and unsuc-
cessful attempts to train a Learning-Guided Automated Reasoning System, such
as those reviewed in [2].

LLMs assisted implementations for data processing tasks The auto-
mated reasoning approach for searching AC simplifications leverages the power
of existing automated theorem provers, eliminating the need for a custom search
procedure. However, it does require data preparation—formulating the prob-
lem as a theorem-proving task—and post-processing—extracting simplification
sequences from successful proofs. We have conducted initial experiments using
Large Language Models (LLMs) to implement the data processing tasks men-
tioned above. Specifically, we used LLM 1 to generate Perl scripts 2 for creating
datasets formatted in Prover9 syntax, enabling theorem-proving tasks aimed at
finding AC simplifications for the AK and MS families. The scripts take spec-
ifications of a presentation or a subset of presentations by defining a range of
parameters and then generate a corresponding dataset of theorem-proving tasks,
each stored in a separate file. Admittedly, generating such data is a relatively sim-
ple task that could be implemented directly without the help of LLMs. However,
we would like to highlight several key advantages of this approach. First, the im-
plementation required minimal effort, as tasks were specified through free-form
dialogue in semi-technical natural language. Moreover, LLMs demonstrated an
exceptional ability to automatically handle conversation context and adjust the
level of abstraction when discussing design and implementation. For example,
when specifying the required properties of group presentations, multiple defini-
tions and representations of relators were used seamlessly: as words in the alpha-
bet a, b, a’, b’; as shorthand for terms in group theory, omitting explicit mul-
tiplication operations and structured brackets; and as symbolic notation using
exponentiation (e.g., a^{3}b^{-4}). All naturally occurring and assumed equiv-
alences, as well as case-based explanations and generalizations (e.g., “. . . and
similarly for any n”), were handled correctly. LLMs assissted implementations
of generatiom for G and for simplification sequences extraction from proofs are
ongoing and will be made available upon completion.

LLMs for simplification sequences understanding Understanding the
behavior of AC-simplification sequences obtained through Automated Theorem
Proving (ATP) or other methods remains a significant challenge. Beyond the
goal of (dis)proving the Andrews-Curtis Conjecture (ACC), the ultimate objec-
tive is to develop arguments that support human proofs of simplifiability for
infinite (sub)families of group presentations. While we have not yet succeeded
in this endeavor, we would like to acknowledge the support of LLMs in gener-
ating LaTeX source code for a simple diagram visualizing the so-called merging
behavior of simplification sequences MSn(w∗) for n = 3 . . . 9 in [9].

1 Chat GPT 4o
2 available by request
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