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A recent assessment of large language models claims LLMs have, through pre-training
by next-word prediction, largely achieved “formal linguistic competence (knowledge of
linguistic rules and patterns)” but not “functional linguistic competence (understanding
and using language in the world)” [M+24]. Functional competence, it is suggested, calls
for fine-tuning through, for example, reinforcement learning. Fine-tuning is about align-
ment, which the present paper approaches by refining notions of state around which to
carry out a minimum cost search, supported by finite-state methods (and tools such as
[Mona]) for a discretized least action principle [F63,MW01].

To see what a notion of state adds to next-word (or token) prediction, recall that
the probability of a string a1a2 · · · an of n tokens ai is the product of the conditional
probabilities P (ai+1|a1a2 · · · ai) of (next token) ai+1 given a1a2 · · · ai, for 0 ≤ i < n

P (a1a2 · · · an) =
n−1∏
i=0

P (ai+1|a1a2 · · · ai) (1)

(e.g., [RN20]). While it is customary with automata to extract a1a2 · · · an from a chain

q0
a1→ q1

a2→ q2 · · ·
an→ qn (2)

of state transitions linking an initial state q0 to a final state qn, no state qi is mentioned
in (1) — unless qi is say, its history a1a2 · · · ai in which case P (ai+1|qi) appears in (1)
as the factor P (ai+1|a1a2 · · · ai). Already with n-grams, other notions of state are at
play, suggesting P (ai+1|qi) as an alternative to P (ai+1|a1a2 · · · ai) for transitions (2)
subject to the Markov property; for example, the trigram model

P (ai+2|aiai+1) = P (ai+2|a1a2 · · · aiai+1)

arises when a state, qi+1, can be identified with the two most recent tokens seen, aiai+1.
Similar reductions for actions ai in a path (2) from a Markov decision process apply to
probabilities describing policies

P (ai|qi−1) = P (ai|q0a1q1 · · · ai−1qi−1) (how often to do ai at state qi−1) (3)

and transitions between states

P (qi|qi−1ai) = P (qi|q0a1 · · · qi−1ai) (how probable qi is after ai at qi−1). (4)

The product of the policy and transition probabilities is the conditional probability
P (aiqi|qi−1) of doing ai with the consequence qi given qi−1. Over i = 1 to n, their
product is the probability of (2) given q0

P (a1q1 · · · anqn|q0) =

n∏
i=1

P (aiqi|qi−1) (5)

assuming (3) and (4). Mapping probabilities to surprisals [S48] as costs
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ci := − logP (aiqi|qi−1) for 0 < i ≤ n

turns the product in (5) to a sum

− logP (a1q1 · · · anqn|q0) =

n∑
i=1

ci (6)

of costs ci. As P (aiqi|qi−1) = P (qi−1aiqi)/P (qi−1), each cost ci is a difference

ci =Ki − Vi where Ki := − logP (qi−1aiqi) and Vi := − logP (qi−1)

between terms Ki and Vi related by marginalization P (qi−1) =
∑

a,q P (qi−1aq) and
the intuition: given the benefit Vi, pay the cost Ki. To view Ki and Vi as analogous to
kinetic and potential energies, and their difference ci as a cost-minus-benefit Lagrangian
L(q, q̇) over a state vector q and velocity vector q̇, a discretization of mechanics is in
order, “the starting point” of which, according to [MW01], is to “regard two nearby
points as being the discrete analogue of a velocity vector” (page 360). The main idea
of the present work is to reduce the time-step h between “nearby points” by refining
the notion of state, whilst recognizing the label on a state transition qi−1

ai→ qi in a
generalized velocity (qi−1, ai, qi). The label ai brings in an agent/policy (3), shaped by
rewards and an exploration-exploitation dilemma that go into alignment.1

From action as a label on state transitions, we turn to action as an integral over time,∫ t2
t1

L(q, q̇)dt, discretized as a finite sum. We map a path (2) to the sum
∑n

i= ci in (6),
setting aside for the moment the time-step h, which “to relate discrete and continuous
mechanics it is necessary to introduce” [MW01, page 370]. (For the sum to align to
the integral, let h approach 0.) The interest in (2) reflects the view that “the analysis
of the patterns generated by the world in any modality, with all their naturally occur-
ring complexity and ambiguity” is served by “reconstructing the processes, objects and
events that produced them” [M94, page 187]. That reconstruction is complicated by the
various bounded granularities at which paths (2) are observed (as patterns), leading to
strings both more and less detailed than a1a2 · · · an. These granularities and strings can
be encoded as signatures Σ and Σ-models of an institution [GB92], exhibiting defor-
mations studied in [GM07,M94]. This is outlined in [F23], where time is compressed
to ensure change discernible through generalized coordinates of a state q (relativized to
Σ). These coordinates can be identified with inner cells in Kleene’s analysis of nerve
nets [K56], taking values approximated to finite precision. Refinements within and be-
tween institutions effectively reduce the time-step h of the discrete Lagrangian. Now,
just as there are multiple Lagrangians L (not all of the form Ki − Vi), so too are there
many distributions P (from, for example, different policies). Where a signature Σ fails
to support assumptions (3) and (4), we redefine ci as − logP (aiqi|q0a1 · · · ai−1qi−1).
Whether or not entropy maximization in say, [S+20] is applicable, we can let the rele-
vant conditional probabilities be uniform (for priors, subject to update from learning),
working with a sample space of Σ-models under finite-state constraints to fine-tune Σ
and notions that Σ associates with paths (2). (Details in the presentation/paper.)

1 Observe that (1) mentions no goal or final state qn to search, even if a state qi is its history. By
contrast, the costing (6) of the path (2) from q0 to qn informs a “search for links” [W90].
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