Structure-Aware Neural Representations
of Agda Programs

Konstantinos Kogkalidis! 2[0009—0008—1535-9717]
Orestis Melkonian3[0000—0003—2182—2698]
Jean-Philippe Bernardy*5[0000—0002—8469—5617]

! Aalto University
% University of Bologna
% Input Output (IOG)
* University of Gothenburg
5 Chalmers University of Technology

Abstract. We introduce an ML-ready dataset for dependently-typed
program-proofs in the Agda proof assistant, and present the underlying
extraction tool. We then demonstrate how a bidirectional Transformer
encoder retrofitted with structure-specific adjustments can achieve high
performance in a realistic premise selection setup. Unlike most go-to LLM
architectures, both the dataset and the neural model work in tandem to
maximally preserve the typing information offered by Agda. The result-
ing pipeline is agnostic and impervious to most syntactic confounds, pro-
ducing inferences on the basis of type structure alone. Empirical evidence
support this being a general, robust, and efficient modeling approach.

Keywords: Premise Selection - Dependent Types - Agda - Representa-
tion Learning.

Motivation. The code below suggests how one could go about formalizing the
commutative property of addition using the Agda proof assistant.

open import Relation.Binary.PropositionalEquality using (_ = _; refl; cong; trans)
data N : Set where _+_ N> N->N

zero : N zero +n=mn

suc :N =N suc m + n = suc (m + n)

+-comm:(mn:N)y—=>m+n=n+m

+-comm zero zero = refl
+-comm zero (suc n) = cong suc (+-comm zero n)
+-comm (suc m) zero = cong suc (+-comm m zero)

+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (4+-comm (suc m) n))
where +-suc : V. m n — m + suc n = suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)

Agda has colored the code for us; its ability to do so is an assertion the code does
indeed type check, while the colors assigned help us to visually differentiate sub-
strings according to their syntactic function (e.g., built-ins, data types, named



2 K. Kogkalidis, O. Melkonian, J.-P. Bernardy

variables, functions/properties etc.). Also worth noting is that the names of the
two naturals used in this proof don’t really matter, since the two are universally
quantified; m and n might as well have been z and vy, foo and bar, or Alice and
Bob for that matter. When integrating the proof assistant with a machine learn-
ing system, how one treats the code matters. Treating the code as a flat string
obfuscates these (and many other) useful hints of syntactic wisdom, demoting
the type checker from a valuable collaborator to a deferred sanity filter.

Contributions. Here, we do the code justice. Our contributions are two-fold:
— Machine Learning for Agda [2]

We develop a package to faithfully extract the skeleton structure of dependently-

typed program-proofs from type-checked Agda files. We apply the algorithm
on Agda’s public library ecosystem and release the result as a massive, highly
elaborated ATP dataset.
— Representation Learning for Dependent Types [3]

Capitalizing on this new resource, we present a representation learning model
for expressions involving dependent types. Contra prior work, the model is
structure-faithful, being invariant to a-renaming, superficial syntactic sug-
aring, scope permutation, irrelevant definitions, etc.

Methodology. We use Agda’s type-checker to find all possible holes in all writ-
ten proofs. For each hole, we record the goal type and the typing context. Ground
truth corresponds to the subset of the context that was actually used to fill the
hole. Crucially, we export the extracted problems not only as strings, but also
as structures; the export preserves and specifies all type information available
to the checker, including references and token structure at the subtype level. We
design our neural model so as to effectively maintain and utilize this information;
this is what the types of N, + and +-comm look like post-tokenization:

+-comm

m : Set s

AN AN

Z,
Z
¥

Results. Extensive evaluation shows the model to perform adequately in a
realistic premise selection setup, where it in fact outperforms several traditional
(structure-oblivious) alternatives of the same scale.

For details, we redirect the interested reader to the full published manuscript [1].



Structure-Aware Neural Representations of Agda Programs 3

References

1. Kogkalidis, K., Melkonian O., Bernardy, J.-P.: Learning Structure-Aware Represen-
tations of Dependent Types.

2. AGDA2TRAIN Github repository: https://github.com/omelkonian/agda2train.

3. QuILL Github repository: https://github.com/konstantinosKokos/quill/.


https://openreview.net/forum?id=e397soEZh8
https://openreview.net/forum?id=e397soEZh8
https://github.com/omelkonian/agda2train
https://github.com/konstantinosKokos/quill/

	Structure-Aware Neural Representations of Agda Programs

