
Structure-Aware Neural Representations

of Agda Programs

Konstantinos Kogkalidis1,2[0009−0008−1535−9717]

Orestis Melkonian3[0000−0003−2182−2698]

Jean-Philippe Bernardy4,5[0000−0002−8469−5617]

1 Aalto University
2 University of Bologna
3 Input Output (IOG)

4 University of Gothenburg
5 Chalmers University of Technology

Abstract. We introduce an ML-ready dataset for dependently-typed
program-proofs in the Agda proof assistant, and present the underlying
extraction tool. We then demonstrate how a bidirectional Transformer
encoder retro�tted with structure-speci�c adjustments can achieve high
performance in a realistic premise selection setup. Unlike most go-to LLM
architectures, both the dataset and the neural model work in tandem to
maximally preserve the typing information o�ered by Agda. The result-
ing pipeline is agnostic and impervious to most syntactic confounds, pro-
ducing inferences on the basis of type structure alone. Empirical evidence
support this being a general, robust, and e�cient modeling approach.

Keywords: Premise Selection · Dependent Types · Agda · Representa-
tion Learning.

Motivation. The code below suggests how one could go about formalizing the
commutative property of addition using the Agda proof assistant.

open import Relation.Binary.PropositionalEquality using (_≡_; re�; cong; trans)

data N : Set where
zero : N
suc : N → N

_+_ : N → N → N
zero + n = n

suc m + n = suc (m + n)

+-comm : (m n : N) → m + n ≡ n + m

+-comm zero zero = re�
+-comm zero (suc n) = cong suc (+-comm zero n)
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
where +-suc : ∀ m n → m + suc n ≡ suc (m + n)

+-suc zero n = re�
+-suc (suc m) n = cong suc (+-suc m n)

Agda has colored the code for us; its ability to do so is an assertion the code does
indeed type check, while the colors assigned help us to visually di�erentiate sub-
strings according to their syntactic function (e.g., built-ins, data types, named



2 K. Kogkalidis, O. Melkonian, J.-P. Bernardy

variables, functions/properties etc.). Also worth noting is that the names of the
two naturals used in this proof don't really matter, since the two are universally
quanti�ed; m and n might as well have been x and y , foo and bar , or Alice and
Bob for that matter. When integrating the proof assistant with a machine learn-
ing system, how one treats the code matters. Treating the code as a �at string
obfuscates these (and many other) useful hints of syntactic wisdom, demoting
the type checker from a valuable collaborator to a deferred sanity �lter.

Contributions. Here, we do the code justice. Our contributions are two-fold:
� Machine Learning for Agda [2]

We develop a package to faithfully extract the skeleton structure of dependently-
typed program-proofs from type-checked Agda �les. We apply the algorithm
on Agda's public library ecosystem and release the result as a massive, highly
elaborated ATP dataset.

� Representation Learning for Dependent Types [3]
Capitalizing on this new resource, we present a representation learning model
for expressions involving dependent types. Contra prior work, the model is
structure-faithful, being invariant to α-renaming, super�cial syntactic sug-
aring, scope permutation, irrelevant de�nitions, etc.

Methodology. We use Agda's type-checker to �nd all possible holes in all writ-
ten proofs. For each hole, we record the goal type and the typing context. Ground
truth corresponds to the subset of the context that was actually used to �ll the
hole. Crucially, we export the extracted problems not only as strings, but also
as structures; the export preserves and speci�es all type information available
to the checker, including references and token structure at the subtype level. We
design our neural model so as to e�ectively maintain and utilize this information;
this is what the types of N, + and +-comm look like post-tokenization:

�

Set

N

�

→

→

(N)(N)

(N)

+

�

Π

Π

@

@

(m)@

(n)(+)

@

@

(n)@

(m)(+)

(≡)

(n : Set)

(m : Set)

+-comm

Results. Extensive evaluation shows the model to perform adequately in a
realistic premise selection setup, where it in fact outperforms several traditional
(structure-oblivious) alternatives of the same scale.

For details, we redirect the interested reader to the full published manuscript [1].



Structure-Aware Neural Representations of Agda Programs 3

References

1. Kogkalidis, K., Melkonian O., Bernardy, J.-P.: Learning Structure-Aware Represen-
tations of Dependent Types.

2. agda2train Github repository: https://github.com/omelkonian/agda2train.
3. quill Github repository: https://github.com/konstantinosKokos/quill/.

https://openreview.net/forum?id=e397soEZh8
https://openreview.net/forum?id=e397soEZh8
https://github.com/omelkonian/agda2train
https://github.com/konstantinosKokos/quill/

	Structure-Aware Neural Representations of Agda Programs

