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Recent advancements in large language models have significantly influenced
mathematical reasoning and theorem proving in artificial intelligence. Despite
notable progress in natural language domains, language models still encounter
substantial challenges in formal theorem proving, e.g. using Lean [5] and Isabelle
[7], which requires rigorous derivations satisfying formal specifications of the
verification system. Even advanced models like GPT-4 [6] struggle with complex
formal proofs, underscoring the intricate nature of both the coding and the
mathematics involved. A formal theorem proving model must not only grasp the
syntax and semantics of formal systems like the Lean theorem prover but also
align abstract mathematical reasoning with precise formal representation.

Language models in formal theorem proving typically employ two strategies:
proof-step generation [2, 4, 11, 13] and whole-proof generation [10, 14]. The
proof-step generation approach is motivated by the interactive nature of Lean’s
tactic mode, in which the compiler provides the access to the tactic state, i.e., a
structured representation summarising the current status of the proof, including
all the relevant information such as the local context of hypotheses and pending
goals. Given the intermediate tactic state, the proof-step generation approach
predicts each subsequent tactic and verifies it using the formal verifier to obtain
updated information about the current tactic state. This interactive process of-
ten employs tree search techniques to compose valid proofs through several iter-
ations of tactic generation [8]. In contrast, the whole-proof generation approach
treats the construction of formal proofs as a general code completion task. This
branch of methods aims to generate the entire proof code based on the theorem
statement and perform verification only at the end of the generation process.
The simplicity of the whole-proof generation paradigm has been proven to offer
high scalability [12] from the perspectives of both model training and inference
deployment. In addition, the whole-proof generation model is trained to perform
long-term planning for theorem proving, facilitating the integration and utili-
sation of the model’s capabilities in natural language mathematical reasoning
[3].

We present a unified approach that combines the strengths of both proof-step
and whole-proof generation paradigms. We begin by training a whole-proof gen-
eration model, incorporating several auxiliary tasks to enhance its capabilities in
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    rw [h₀]
    constructor
    · intro h
      -- We solve the equation (2x + 3)[2x - 10] = 0.
      have : (2 * x + 3) * (x - 4 + x - 6) = 0 :=
        by linear_combination h
      -- This gives us two cases to solve.
      cases' eq_zero_or_eq_zero_of_mul_eq_zero this
        with h1 h2
      · -- Case 1: 2x + 3 = 0
        left
        linarith
      · -- Case 2: 2x - 10 = 0
        right
        linarith
    · -- We check that -3/2 and 5 are indeed roots.
      rintro (rfl | rfl) <;> norm_num
  -- Now we compute the sum of the roots.
  rw [this]
  norm_num

reward

Passed the verification of
Lean4 prover

    rw [h₀]
    constructor
    · intro h
      -- We solve the equation (2x + 3)[2x - 10] = 0.
      have : (2 * x + 3) * (x - 4 + x - 6) = 0 :=
        by linear_combination h
      -- This gives us two cases to solve.
      cases' eq_zero_or_eq_zero_of_mul_eq_zero this
        with h1 h2
      · -- Case 1: 2x + 3 = 0
        left
        linear_combination (1 / 2) * h1
      · -- Case 2: 2x - 10 = 0
        right
        linear_combination (1 / 2) * h2
    · -- We check that -3/2 and 5 are indeed roots.
      rintro (rfl | rfl) <;> norm_num
  -- Now we compute the sum of the roots.
  rw [this]
  norm_num
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import Mathlib
import Aesop

set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

/-- Compute the sum of all the roots of $(2x+3)(x-4)+(2x+3)(x-6)=0$.
Show that it is 7/2.-/
theorem amc12a_2002_p1 (f : ℂ → ℂ) (h₀ : ∀ x, f x = (2 * x + 3) * (x - 4) + 
(2 * x + 3) * (x - 6)) (h₁ : Fintype (f⁻¹' {0})) : 
  ∑ y in (f⁻¹' {0}).toFinset, y = 7 / 2 := by
  -- We show that the roots of the polynomial are -3/2 and 5.
  have : (f⁻¹' {0}).toFinset = {-(3 / 2 : ℂ), (5 : ℂ)} := by
    ext x
    simp only [Set.mem_toFinset, Set.mem_singleton_iff, Set.mem_preimage,
      Set.mem_setOf, Finset.mem_insert, Finset.mem_singleton]
    /- tactic state:
    case a
    f : ℂ → ℂ
    h₀ : ∀ (x : ℂ), f x = (2 * x + 3) * (x - 4) + (2 * x + 3) * (x - 6)
    h₁ : Fintype ↑(f ⁻¹' {0})
    x : ℂ
    ⊢ f x = 0 ↔ x = -(3 / 2) ∨ x = 5
    -/
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Fig. 1: Overall Framework of DeepSeek-Prover-V1.5.

mathematical reasoning and long-horizon planning, meanwhile empowering it to
recognise information from Lean’s proof assistant feedback. The model is named
DeepSeek-Prover-V1.5, as it builds upon the prior work of DeepSeek-Prover-
V1 [12]. We then employ a truncate-and-resume mechanism to decompose the
whole-proof generation into a tactic-level proof search scheme. Figure 1 presents
an illustration of our approach. The process begins with standard whole-proof
generation, where the language model completes the proof code following the
theorem statement prefix. The Lean assistant then verifies this code. If an error
is detected, the code is truncated at the first error message, and any subse-
quent code is discarded. The successfully generated proof code is then used as
a prompt for the generation of next proof segment. The latest tactic state from
the Lean prover is appended at the end of the prompt as a comment block to
provide intermediate guidance for the construction of long proofs. Notably, our
method is not restricted to resuming from the last successfully applied tactic. We
formalise the truncate-and-resume mechanism within the framework of Monte-
Carlo tree search (MCTS) [1] in which the truncation points are scheduled by
the tree search policy. In addition, we propose a novel reward-free exploration
algorithm for MCTS to address the reward sparsity issue of proof search. We as-
sign the tree search agent intrinsic motivation, a.k.a. curiosity [9], to extensively
explore the tactic state space. These algorithmic modules extend the functional-
ity of our whole-proof generation model to become a flexible tool for interactive
theorem proving, which can effectively utilise the proof assistant feedback and
generate diverse solution candidates. In experiments, we demonstrate substan-
tial improvement of our proposed approach over baseline models, achieving new
state-of-the-art results on the test set of the high school level miniF2F bench-
mark (63.5%) and the undergraduate level ProofNet benchmark (25.3%).
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