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1 Introduction & Background

Along with the success of Large Language Models (LLMs) in other domains [5],
a quickly developing body of research is investigating the use of Large Language
Models to analyze or generate program code [6, 8, 10, 12, 13, 15, 16, 18, 19].
Our work investigates using LLMs for generating (auxiliary) specifications for a
real-world programming language (namely Java). In contrast to pure code gen-
eration, where LLMs could produce buggy code, specification generation allows
us to rigorously check consistency between pre-existing source code and gener-
ated annotations through the use of theorem provers. This extended abstract
summarizes our efforts [3, 17] to couple the deductive verification tool KeY with
GPT to automate the process of annotating Java code with JML specifications.

//@ ensures \result == -2*x;
int f(int x) {

return g(-x);
}
int g(int x) {

return x+x;
}
Listing 1.1. Callee method g lacks an
annotation [3, 17]

KeY and JML. KeY [1] is an interac-
tive theorem prover for Java Dynamic
Logic [1, 2] (JavaDL) allowing the deduc-
tive verification of Java programs w.r.t.
specifications written in the Java Model-
ing Language (JML) [11]. Given a piece
of Java code and a JML specification, the
artifacts are translated into a JavaDL for-
mula which must be proven valid for suc-
cessful verification. To this end, KeY implements a sequent-style calculus. Con-
sider the example in Listing 1.1: Here, the method f is annotated with a JML
specification which states that the method’s return value must be -2*x. However,
proving statements about f requires assumptions about g. To admit modular ver-
ification, KeY will use a JML specification on the behavior of g as a lemma to
prove the correctness of f. Then, we also have to prove that g adheres to its as-
sumed JML specification. This modular, auto-active [14] approach has been used
in numerous real-world case studies [4, 7, 9] that even discovered a bug in Open-
JDK’s sort method [7]. However, while modular verification is very desirable to
reduce complexity, it does require that we annotate submethods with suitable
JML specifications. Similarly, we also have to annotate loops with invariants and
variants to prove their correctness and termination. We call the specification of
f a top-levelspecification. Auxiliary specifications (such as loop invariants or the
specification of a method like g) are classically written manually by experts.
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2 Automated Specification Generation using LLMs
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Fig. 1. Our LLM integration for
KeY [17]

To decrease the user effort for deductively ver-
ifying Java programs, we have implemented
a prototype that, given a Java program and
its top-level specification, generates the re-
quired auxiliary specifications (in particu-
lar submethod specifications and loop invari-
ants). Our approach is visualized in Figure 1:
Given a partially annotated Java program, we
use an LLM to generate missing annotations.
Subsequently we call a verification tool, in this
case KeY, which either successfully verifies the
top-level specification or returns an error. In the latter case, we ask the LLM
for a new/refined annotation. Our prototype either returns a basic error descrip-
tion from the verifier to the LLM (feedback-based approach) or just samples a
different solution from the LLM without feedback (sampling-based approach).

Table 1. Overview of experimental results:
mean (µ) and standard deviation (σ) of suc-
cess rate across 5 runs [3]
Category µ± σ of success rate (%)

GPT 3.5 GPT 4o
Submethods 19.3± 12.1 40.5± 4.1
Invariants 37.0± 7.4 67.9± 5.7

Evaluation. As an initial evaluation
of our approach, we constructed a
benchmark set of 27 benchmark in-
stances for invariant generation and
14 benchmark instances for sub-
method specification generation. Each
instance consists of a partial JML
specification which misses one (auxiliary) submethod or loop specification that
must be generated by the LLM. The benchmarks cover a wide range of Java and
JML features supported by KeY including quantifiers, arrays, and field access [3].
The results for the feedback-based approach can be found in Table 1 and are
quite promising given they were achieved with minimal prompt engineering.

We also compared the sampling and feedback-based approaches [17]. Here, we
compare the percentage of successfully solved instances for the two approaches
for one to ten iterations (see Figure 2 for invariants benchmark set): KeY’s cur-
rent feedback seems insufficient to improve upon sampling. Moreover, our feed-
back approach sometimes gets “stuck” by minimally changing a wrong solution
instead of pivoting to a correct one. The behavior for submethods is similar [17].
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Fig. 2. Success of feedback-based and sampling-based invariant generation approach
for different numbers of iterations (min/max across 5 runs)
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