
Towards LLM-support for Deductive Verification
of Java Programs

Samuel Teuber[0000−0001−7945−9110] and Bernhard Beckert[0000−0002−9672−3291]

Karlsruhe Institute of Technology, Germany
{teuber,beckert}@kit.edu

1 Introduction & Background

Along with the success of Large Language Models (LLMs) in other domains [5],
a quickly developing body of research is investigating the use of Large Language
Models to analyze or generate program code [6, 8, 10, 12, 13, 15, 16, 18, 19].
Our work investigates using LLMs for generating (auxiliary) specifications for a
real-world programming language (namely Java). In contrast to pure code gen-
eration, where LLMs could produce buggy code, specification generation allows
us to rigorously check consistency between pre-existing source code and gener-
ated annotations through the use of theorem provers. This extended abstract
summarizes our efforts [3, 17] to couple the deductive verification tool KeY with
GPT to automate the process of annotating Java code with JML specifications.

//@ ensures \result == -2*x;
int f(int x) {

return g(-x);
}
int g(int x) {

return x+x;
}
Listing 1.1. Callee method g lacks an
annotation [3, 17]

KeY and JML. KeY [1] is an interac-
tive theorem prover for Java Dynamic
Logic [1, 2] (JavaDL) allowing the deduc-
tive verification of Java programs w.r.t.
specifications written in the Java Model-
ing Language (JML) [11]. Given a piece
of Java code and a JML specification, the
artifacts are translated into a JavaDL for-
mula which must be proven valid for suc-
cessful verification. To this end, KeY implements a sequent-style calculus. Con-
sider the example in Listing 1.1: Here, the method f is annotated with a JML
specification which states that the method’s return value must be -2*x. However,
proving statements about f requires assumptions about g. To admit modular ver-
ification, KeY will use a JML specification on the behavior of g as a lemma to
prove the correctness of f. Then, we also have to prove that g adheres to its as-
sumed JML specification. This modular, auto-active [14] approach has been used
in numerous real-world case studies [4, 7, 9] that even discovered a bug in Open-
JDK’s sort method [7]. However, while modular verification is very desirable to
reduce complexity, it does require that we annotate submethods with suitable
JML specifications. Similarly, we also have to annotate loops with invariants and
variants to prove their correctness and termination. We call the specification of
f a top-levelspecification. Auxiliary specifications (such as loop invariants or the
specification of a method like g) are classically written manually by experts.

2 S. Teuber and B. Beckert

2 Automated Specification Generation using LLMs

Partially Annotated Java Program (1)

LLM:
Annotation Generation

?
Verifier (e.g. KeY)

Annotation
Draft (2)

Annotated File (3)

Success

Error (4)

Fig. 1. Our LLM integration for
KeY [17]

To decrease the user effort for deductively ver-
ifying Java programs, we have implemented
a prototype that, given a Java program and
its top-level specification, generates the re-
quired auxiliary specifications (in particu-
lar submethod specifications and loop invari-
ants). Our approach is visualized in Figure 1:
Given a partially annotated Java program, we
use an LLM to generate missing annotations.
Subsequently we call a verification tool, in this
case KeY, which either successfully verifies the
top-level specification or returns an error. In the latter case, we ask the LLM
for a new/refined annotation. Our prototype either returns a basic error descrip-
tion from the verifier to the LLM (feedback-based approach) or just samples a
different solution from the LLM without feedback (sampling-based approach).

Table 1. Overview of experimental results:
mean (µ) and standard deviation (σ) of suc-
cess rate across 5 runs [3]
Category µ± σ of success rate (%)

GPT 3.5 GPT 4o
Submethods 19.3± 12.1 40.5± 4.1
Invariants 37.0± 7.4 67.9± 5.7

Evaluation. As an initial evaluation
of our approach, we constructed a
benchmark set of 27 benchmark in-
stances for invariant generation and
14 benchmark instances for sub-
method specification generation. Each
instance consists of a partial JML
specification which misses one (auxiliary) submethod or loop specification that
must be generated by the LLM. The benchmarks cover a wide range of Java and
JML features supported by KeY including quantifiers, arrays, and field access [3].
The results for the feedback-based approach can be found in Table 1 and are
quite promising given they were achieved with minimal prompt engineering.

We also compared the sampling and feedback-based approaches [17]. Here, we
compare the percentage of successfully solved instances for the two approaches
for one to ten iterations (see Figure 2 for invariants benchmark set): KeY’s cur-
rent feedback seems insufficient to improve upon sampling. Moreover, our feed-
back approach sometimes gets “stuck” by minimally changing a wrong solution
instead of pivoting to a correct one. The behavior for submethods is similar [17].

2 4 6 8 10
0.50

0.75

In
va

ria
nt

s

Successful Instances (GPT-4O)
Feedback
Sampling
Median
Min/Max

Fig. 2. Success of feedback-based and sampling-based invariant generation approach
for different numbers of iterations (min/max across 5 runs)

Towards LLM-support for Deductive Verification of Java Programs 3

References

1. Ahrendt, W. (ed.): Deductive Software Verification - The KeY Book - From Theory
to Practice. Springer (2016)

2. Beckert, B.: A Dynamic Logic for the Formal Verification of Java Card Programs.
In: Attali, I., Jensen, T.P. (eds.) Java on Smart Cards: Programming and Security,
First International Workshop, JavaCard 2000, Cannes, France, September 14, 2000,
Revised Papers. LNCS, vol. 2041, pp. 6–24. Springer, Heidelberg (2000). https:
//doi.org/10.1007/3-540-45165-X_2

3. Beckert, B., Klamroth, J., Pfeifer, W., Röper, P., Teuber, S.: Towards Combin-
ing the Cognitive Abilities of Large Language Models with the Rigor of Deduc-
tive Progam Verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024, Crete,
Greece, October 27-31, 2024, Proceedings, Part IV. LNCS, vol. 15222, pp. 242–257.
Springer, Heidelberg (2024). https://doi.org/10.1007/978-3-031-75387-9_15

4. Beckert, B., Sanders, P., Ulbrich, M., Wiesler, J., Witt, S.: Formally Verifying
an Efficient Sorter. In: Finkbeiner, B., Kovács, L. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 30th International Conference,
TACAS 2024, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11,
2024, Proceedings, Part I. LNCS, vol. 14570, pp. 268–287. Springer, Heidelberg
(2024). https://doi.org/10.1007/978-3-031-57246-3_15

5. Brown, T.B. et al.: Language Models are Few-Shot Learners. In: Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (2020)

6. Chakraborty, S. et al.: Ranking LLM-Generated Loop Invariants for Program Ver-
ification. (2023). https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.614

7. de Gouw, S. et al.: Verifying OpenJDK’s Sort Method for Generic Collections. J.
Autom. Reason. 62(1), 93–126 (2019). https://doi.org/10.1007/S10817-017-
9426-4

8. Granberry, G., Ahrendt, W., Johansson, M.: Specify What? A Case-Study using
GPT-4 and Formal Methods For Specification Synthesis. In: AI for Math Workshop
@ ICML 2024 (2024). https://openreview.net/forum?id=ZRTcPkNl7v

9. Hiep, H.A. et al.: Verifying OpenJDK’s LinkedList using KeY. In: Biere, A., Parker,
D. (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
26th Intl. Conf. TACAS, Dublin, Ireland, Part II. LNCS,vol. 12079, pp. 217–234.
Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45237-7_13

10. Janßen, C., Richter, C., Wehrheim, H.: Can ChatGPT support software verifica-
tion? In: Beyer, D., Cavalcanti, A. (eds.) Fundamental Approaches to Software
Engineering - 27th International Conference, FASE 2024, Luxembourg City, Lux-
embourg, April 6-11, 2024, Proceedings. LNCS, vol. 14573, pp. 266–279. Springer,
Heidelberg (2024). https://doi.org/10.1007/978-3-031-57259-3_13

11. Leavens, G.T. et al.: JML Reference Manual. Draft revision 2344. May 2013. http:
//www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf.

12. Kamath, A. et al.: Finding Inductive Loop Invariants using Large Language Mod-
els. CoRR abs/2311.07948 (2023). arXiv: 2311.07948

13. Lathouwers, S., Huisman, M.: Survey of annotation generators for deductive veri-
fiers. Journal of Systems and Software 211, 111972 (2024). https://doi.org/10.
1016/j.jss.2024.111972

https://doi.org/10.1007/3-540-45165-X_2
https://doi.org/10.1007/3-540-45165-X_2
https://doi.org/10.1007/978-3-031-75387-9_15
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.614
https://doi.org/10.1007/S10817-017-9426-4
https://doi.org/10.1007/S10817-017-9426-4
https://openreview.net/forum?id=ZRTcPkNl7v
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/978-3-031-57259-3_13
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
https://arxiv.org/abs/2311.07948
https://doi.org/10.1016/j.jss.2024.111972
https://doi.org/10.1016/j.jss.2024.111972

4 S. Teuber and B. Beckert

14. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Ball, T., Zuck, L.,
Shankar, N. (eds.) Usable Verification Workshop (2010). https://fm.csl.sri.
com/UV10

15. Pei, K., Bieber, D., Shi, K., Sutton, C., Yin, P.: Can Large Language Models
Reason about Program Invariants? In: Krause, A. (ed.) Proceedings of the 40th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, pp. 27496–27520. PMLR (2023). https://proceedings.mlr.press/
v202/pei23a.html

16. Sun, C., Sheng, Y., Padon, O., Barrett, C.W.: Clover: Closed-Loop Verifiable
Code Generation. In: Avni, G. (ed.) AI Verification - First International Sym-
posium, SAIV 2024, Montreal, QC, Canada, July 22-23, 2024, Proceedings. LNCS,
vol. 14846, pp. 134–155. Springer, Heidelberg (2024). https://doi.org/10.1007/
978-3-031-65112-0_7

17. Teuber, S., Beckert, B.: Next Steps in LLM-Supported Java Verification (Short
Paper). In: 1st International Workshop on Neuro-Symbolic Software Engineering
(NSE 2025). IEEE (2025). Forthcoming

18. Wu, H., Barrett, C., Narodytska, N.: Lemur: Integrating Large Language Mod-
els in Automated Program Verification. In: The Twelfth International Confer-
ence on Learning Representations (2024). https://openreview.net/forum?id=
Q3YaCghZNt

19. Yao, J., Zhou, Z., Chen, W., Cui, W.: Leveraging Large Language Models for
Automated Proof Synthesis in Rust. CoRR abs/2311.03739 (2023). arXiv: 2311.
03739

https://fm.csl.sri.com/UV10
https://fm.csl.sri.com/UV10
https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html
https://doi.org/10.1007/978-3-031-65112-0_7
https://doi.org/10.1007/978-3-031-65112-0_7
https://openreview.net/forum?id=Q3YaCghZNt
https://openreview.net/forum?id=Q3YaCghZNt
https://arxiv.org/abs/2311.03739
https://arxiv.org/abs/2311.03739

	Towards LLM-support for Deductive Verification of Java Programs

