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Abstract

I report on the progress of the DeepIsaHOL project for doing modern machine learning
(ML) on the Isabelle interactive theorem prover (ITP) data. The project is ongoing and
focused on creating infrastructure for carrying out ML experiments with Isabelle data such
as fine-tuning large language models (LLMs) or converting Isabelle into a reinforcement
learning (RL) environment. The project’s ultimate objective is to provide tools based on
these experiments to aid Isabelle users in the proving process. This report describes the
project’s current state and the tools it has generated, including a generic data extraction
algorithm from Isabelle’s theory files, its Scala and Python interfaces, simple (Python and
Scala) read, eval, print, loops (REPLs) for interacting with Isabelle programmatically,
and initial use of the framework’s data for training a Google’s FLAN-T5 small LLM. The
project remains open and welcomes ITP and ML enthusiasts to collaborate on it.

Motivation Nowadays, integrations of machine learning (ML) and interactive theorem
provers (ITPs) abound in the literature [6, 23, 2, 17, 1, 10, 18, 24, 22]. Hence, the useful-
ness of ML methods in ITPs has been successfully evidenced to the point that some tools have
already been widely adopted. For instance, the Sledgehammer tool [3] uses a combination of a
k-nearest-neighbour (kNN) algorithm and a plethora of automated theorem provers (ATPs) for
finding the premises that prove many of the Isabelle proof assistant’s higher order logic (HOL)
statements. However, the expected impact and wide-adoption in ITPs of the more recent ML
methods, such as large language models (LLMs), remains to be seen.

There are several factors in the current state of the art that hinder a straightforward com-
parison of the published methods, and therefore, the ITP users’ ability to choose a tool for
their workflows. Firstly, the different implementations of the ITP-ML integrations are hard to
navigate and assess. Part of this stems from the fact that ITPs themselves have diverse imple-
mentations and a solution for one does not immediately translate into a ready-to-use approach
in another. Thus, given that ITPs are tools difficult to master, most users are limited to inte-
grations implemented in their own prover of expertise. Another difficulty is due to the target
learning in the ITP-ML integration. While some approaches focus on premise selection [12] (like
Sledgehammer), others tackle proof-tactic selection [13, 14, 15], autoformalisation [10], conjec-
turing, proof reconstruction or a (partial) combination of all of these [6, 2, 17, 23, 24]. This
variety of methods and integrations makes it difficult to compare them. A community-provided
solution is a generic benchmark [25] comprising the formalisation of the same mathematical
problems in different provers. Yet, the scope of the benchmark is proof-reconstruction which
leaves out single-step approaches like premise or proof-tactic selection. Moreover, despite show-
ing good performance in such a benchmark, recent approaches present typical ML problems:
the models do not generalise nor adapt to using recently defined user-tactics, the benchmarks
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might be part of the training of the LLM—making their use as evaluation metrics unsound—,
and there is not enough data to train the models as in other domains.

Solution A more robust solution is to turn ITPs into environments and make them part
of the models’ training and evaluation. Such an integration gives the models access to the
proof context that users see when interacting with the prover, enabling the models to create
relationships between the proofs’ states and the user-written text. Also, those integrations
provide the models with the data without making it publicly available for general-purpose
LLMs, allowing the creation of robust and task-specific evaluations for the different learning
targets. Furthermore, a well-designed interface between the model and the assistant could allow
faster deployment of custom-made ML-based proof methods that benefit ITP users. Systems
like the Tactician for Coq [2], HOL-list for HOL Light [1], and LeanDojo for Lean [24] have
already active teams developing and enhancing these generic integrations. However, despite
being one of the most used proof assistants and having one of the largest repositories of proofs,
Isabelle has been mostly left out. The Portal to Isabelle (PISA) project [8] that started such
an integration has not been updated since the first half of 2023. As a response to this situation,
the DeepIsaHOL project [7] reports work in progress on: a generic data extraction algorithm
from Isabelle’s theory files, its Scala and Python interfaces, simple (Python and Scala) read,
eval, print, loops (REPLs) for interacting with Isabelle programatically, and initial use of the
framework’s generated data for training Google’s FLAN-T5 small LLM [16, 5] from scratch.

Implementation Isabelle’s core—or Isabelle/ML (for meta-language)—, manages the prover’s
internal state, the logical inference certification and the prover’s data. The remaining Isabelle
tools receive and use the core’s data, and follow its lead. A consequence is that Isabelle has its
own Isabelle/ML parser and its interface is its own (prover-)IDE. Respecting this philosophy,
the DeepIsaHOL project created data-retrieving functions in Isabelle/ML that take as input an
Isabelle .thy file, and produce a JSON object for each proof in the .thy file. To create a link
between well-established ML Python libraries like Hugging Face’s transformers or OpenAI’s
gymnasium [20], the project leverages the fact that Isabelle’s communication with external
tools is via the Scala programming language. In this case, the project used the scala-isabelle
library [21] for lifting Isabelle/ML functions to the Scala level. From here, the Py4j library,
connecting python with the Java virtual machine, enables the usage of these functions at the
Python level too. Due to these integrations, users of the project’s libraries can create a database
from Isabelle’s .thy files, start an interactive session with Isabelle, and even run the project’s
scripts for training T5 LLMs on the generated data (see usage examples in the repository [7]
and the data example in the Appendix B).

Conclusion and future work The project is well-positioned to develop training algorithms
for premise and tactic selection, term generation (as witnesses for existential proofs), conjec-
turing, proof-reconstruction, and reinforcement learning. Another sensible step could be to
reproduce results from previous works and compare them. For instance, a contrast between
the kNN and neural network approaches for premise selection only appears in the Tactician
for Coq [2, 17]. It would be interesting to learn if a different choice of neural network and
data-structure will lead to similar results as those obtained there. Yet, the project’s main ob-
jectives are to provide an RL environment based on Isabelle, and to create a tool for its users.
A valid method-and-premises suggestion tool would already be valuable for novice users. An
invitation to Isabelle or ML experts to collaborate on DeepIsaHOL, or to provide feedback that
accelerates its progress remains open.
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B Example of Printed Data

An example of a JSON object generated generated by the project’s data extraction functions
appears in Figure 1. The data extracted in Figure 1 is more detailed and context-aware than
that of other Isabelle-focused approaches [9, 8, 12]. Moreover, the algorithm extracts more
proofs and proof-steps than previous works. This is because the functions not only extract
proof-data from typical “lemma” and “theorem”-heading proofs, but they also do so for various
Isar proofs and from class, function and type definitions.
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"state": {
"term": "∀s′. s′ ∈ X s ∪ Y s → True =⇒ X s ∪ Y s = UNIV

=⇒ (wlp (λs.X s ∪ Y s) (λs. True) s &&& X s ∪ Y s = UNIV)"
"hyps": [

{"name": "∀s′. s′ ∈ (if T s then X s else Y s)"},
{"name": "Q 0"}
],

"variables": [

{"Type0": "Q,T :: ′s ⇒ bool"},
{"Type1": "s :: ′s"},
{"Type2": "Y,X :: ′s ⇒ ′s set"},
{"Type3": "wlp :: ( ′s ⇒ ′s set) ⇒ ( ′s ⇒ bool) ⇒ ′s ⇒ bool"}
],

"constants": [

{"Type0": "All :: ( ′s ⇒ bool) ⇒ bool"},
{"Type1": "(∈) :: ′s ⇒ ′s set ⇒ bool"},
{"Type2": "If :: bool ⇒ ′s set ⇒ ′s set ⇒ ′s set"},
{"Type3": "(=⇒), (&&&) :: prop ⇒ prop ⇒ prop"},
{"Type4": "Pure.prop :: prop ⇒ prop"},
{"Type5": "UNIV :: ′s set"},
{"Type6": "(=) :: ′s set ⇒ ′s set ⇒ bool"},
{"Type7": "True :: bool"},
{"Type8": "(∪) :: ′s set ⇒ ′s set ⇒ ′s set"},
{"Type9": "(−→) :: bool ⇒ bool ⇒ bool"},
{"Type10": "0 :: ′s"},
{"Type11": "Trueprop :: bool ⇒ prop"}
],

"type variables": [

{"Sort0": " ′s :: zero"}
],

"methods": [

{"name": "Quotient.partiality descending setup"},
{"name": "Transfer.transfer prover start"},

...

{"name": "HOL.simp"},
{"name": "HOL.safe"},
{"name": "HOL.rule"},
{"name": "HOL.auto"},
{"name": "Pure.-"}
],

"thms": [. . . ],
"action": "using assms(2,3)"

}

Figure 1: JSON object generated via the project’s data-retrieving functions.
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