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Abstract. We introduce a neural generator that produces valid Lean 4
expressions directly at the kernel level, bypassing Lean’s elaboration pro-
cess. To train the generator, we implement Lean’s core type checking in
Python and integrate it into a reinforcement learning environment that
assigns rewards for well-typed subexpressions. We evaluate the model’s
ability to learn and adapt within this environment.
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1 Introduction

Machine learning (ML) has demonstrated its potential for formalized math, as
highlighted by recent advancements in neural proof search [5,9,12] and recom-
mendation systems [2,6,7]. Reinforcement learning (RL) is a popular choice to
train these models [12,4] for tasks like premise or tactic selection. Some authors
combine RL with supervised training [3,8]. In RL frameworks, the agent inter-
acts with a proof assistant (PA) in various ways. A popular approach is for the
agent to communicate an action in the form of a tactic. The PA runs the tactic to
generate kernel-level expressions, which are then evaluated by the type checker.

Here, we introduce an RL agent that engages directly with the type checker.
Our method enables the agent to construct an expression tree while an online
type checker validates the tree, and the environment assigns rewards based on
the tree’s correctness. We further show that a neural network can be trained
within this environment to generate valid Lean 4 expressions.

2 Methods

The RL framework consists of the environment, which is based on a type checker,
and a neural model that acts as the agent. The agent incrementally creates an
expression by adding nodes to the corresponding abstract syntax tree (AST)
in a structural manner. After each iteration, the partially created expression is
passed to the environment’s type checker to assign rewards based on compliance
with Lean 4’s type theory. We briefly describe each component of the framework.

Expressions and type checker The expressions are represented as ASTs
that correspond to Lean’s formal grammar. The grammar consists of 13 possible
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primitive constructors, some of which require names or indices. A special symbol
is reserved for holes, representing missing parts of an expression. Following [1], we
adapt a simplified version of Lean 4’s kernel, which processes the agent’s output.
We implement the kernel in Python to fully integrate it into the framework
for greater flexibility and efficiency while also leveraging Python’s robust ML
support.

RL framework The agent’s action is to replace the first hole (in the preorder
traversal of the current AST) by inserting a node using one of the constructors. If
the constructor requires children, sub-holes are added in place. The initial state
of the agent is an AST with only one node, a hole. The environment rewards or
penalizes the agent based on completed subtree validity, evaluated by the type
checker. Invalid subtrees terminate the process with a penalty, valid ones earn
rewards, and unfinished subtrees allow continuation.

Neural agent model We use a recurrent neural network (RNN) [11] to
implement the agent. The input comprises the hidden embedding of the parent
and the relative position of the hole among the parent’s children. The model
outputs a probability distribution over the constructors used to fill the hole,
from which we sample an action. Additionally, it may compute a distribution for
selecting bound variables or names when necessary.

Training We train the model using policy gradient [10] and shape the re-
ward exponentially, with the adjustment inversely proportional to the root node’s
depth of the subtree, promoting globally correct trees over merely correct sub-
trees. We dampen rewards for smaller trees to encourage longer expressions and
reward diverse use of constructors and constants to prevent trivial outputs.

Initially, the model generates expressions, of which less than 22% are valid.
Among the valid expressions, the average number of nodes is 2. After 100 epochs
of training with a batch size 8192, we find that the model learns to generate valid
Lean 4 expressions 96% of the time with expressions averaging around 15 nodes.
It learns to use basic constants from a fixed set of 17, with half having at least
a 5% chance of being used in the expression.

3 Conclusion

Our RL framework can generate valid Lean expressions with high accuracy. We
currently examine how rewards in this environment can be better utilized to
navigate the model towards more correct expressions. Some constants are still
neglected by the model, and we will explore how to shape the rewards further
for more diverse expressions.

In further work, we aim to explore how models can generate representative
embeddings of ASTs of Lean 4 expressions. We plan to consider two approaches.
The first approach is to use the RNN to embed the ASTs. The second is to use
the model as a generator of expressions that can be used to train a secondary
model for embedding. Finally, we plan to use the embeddings for downstream
tasks, particularly for premise selection.
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