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1 Introduction

Cylindrical Algebraic Decomposition (CAD) is a mathematical algorithm that given a set of poly-
nomials decomposes the space into regions in which they are sign invariant. This algorithm requires
the choice of a variable ordering. In fact, the variable ordering can have a huge impact on the
complexity | ].

Since the community realised the importance of variable ordering, some heuristics and machine
learning models have been proposed for this task. One of the barriers that the researchers have
found while training machine learning models is the unbalancedness and lack of existing data.

In this text, a new idea is proposed to both balance and augment the existing datasets by
exploiting the arbitrarity of the variable representations (names). We note that this idea has been
independently proposed also by | ].

2 DMain idea of this paper

Data augmentation consists on generating new instances from existing ones. Imagine we are inter-
ested in training a model to detect the direction of an arrow. We know that a picture of an arrow
pointing to the right that is rotated 90 degrees clockwise results in an arrow pointing down. If the
dataset of arrows is imbalanced, this idea can be used to balance the dataset.

It is possible to exploit this idea further, by generating three extra images from each of the images
in the original dataset, resulting in a balanced dataset of four times the original one. This can also
help fighting against biases in the dataset (e.g. arrows in traffic signals never point downwards so
the model could learn to recognise traffic signals)

Similarly, given a set of polynomials (e.g. {x? —zo, 23 —1}) for which the ideal variable ordering
has been computed (zy = x1 = x3). Simply by swapping the names of the variables z; and z5 we
obtain the new set of polynomials (in the example, {z3 — z1, 25 — 1}), in which we know, without
any computations what is the ideal variable ordering (in the example, z1 > x9 > x3).

3 Experiments

For our experiments the methodology in | | is followed. The obtained dataset has 1019 instances
(labelled sets of polynomials). This dataset is unbalanced, the sizes of different classes are as follow:

0: 406 1: 93 2: 135 3: 51 4: 202 o: 132
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3.1 Datasets

We split this dataset into an original testing dataset containing 20% of the instances and an original
training dataset containing the rest.

We randomly change the label of each instance of the original datasets (training and testing),
obtaining a balanced training dataset and a balanced testing dataset.

Nothing is stopping us from using the six possible reorderings to the dataset. By doing this, we
obtain perfectly balanced testing and training datasets with six times the size they had originally.

3.2 Training the models

Asin | ], cross-validation is used to choose the hyperparameters of various ML models available
in sklearn. This methodology is repeated with the three training datasets available, normal, bal-
anced and augmented. And all these models are tested in the balanced dataset that was obtained
after randomly changing the labels of the original testing dataset.

Training dataset | Normal | Balanced | Augmented
KNN 0.3 0.42 0.55
DT 0.35 0.43 0.54
MLP 0.35 0.45 0.47
SvC 0.23 0.29 0.48
RF 0.46 0.53 0.61

Table 1: Accuracies in the balanced testing dataset of the models trained in the
different training datasets.

4 Conclusion and further work

It has been seen that using a balanced dataset instead of an unbalanced one of the same size
the accuracies of the models improved on average 27%. And when the dataset was augmented to
multiply the size by six the accuracies of the models improved on average 63%. This increases in
accuracy are an amazing result.

This simple idea to augment the dataset for the purpose of CAD can be easily generalised to
any mathematical dataset containing objects in which the variables have arbitrary representations.

Furthermore, similar data augmentation ideas are possible in mathematical objects, one should
reflect on which parts of the representation of a mathematical object are arbitrary.

For example, in the recently published | | where mathematical expressions are represented
as natural text, the order of the operands in commutative operations is arbitrary (e.g. t A2+ y* z
is the same expression as z %y + z A 2). This could be exploited to generate an exorbitant amount
of new instances that do not require labelling.
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