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Agda is a dependently typed functional programming language that is also used as a proof
assistant. A formalisation of a theorem in Agda is written as a type, whereas the proof of the
theorem is an expression of that type. We can use previously defined (and proven) theorems
and lemmas in further proofs, but Agda offers only rudimentary support for searching for
suitable candidates. We explore the design of a search system that goes beyond matching the
type of the current goal and the types of current assumptions. The exhaustive search for an
appropriate candidate is infeasible due to combinatorial explosion. Hence we aim to develop
its approximation with machine learning. The preliminary experiments were conducted on the
standard [4] and unimath [8] Agda libraries. Since the definitions in each of these libraries
rarely reference definitions from other libraries, we create a separate training dataset for each.

There are (at least) two machine learning tasks that correspond to the problem of finding
appropriate suggestions for continuing a proof. First, one can address the problem by developing
a recommender system (such as those in web browsers [3]), which interprets the current context
(the goal type and the partially written expression) as a query, ranks the candidates (the
previous definitions in the library) by some (possibly implicit) heuristic score, and returns a
ranked list with the top suggestions. Second, one can address the problem as an instance of
multi-label classification (MLC), which is often used for image recognition (e.g., when labelling
images with sets of labels such as {dog}, {house, car}, etc. [9]). In our case, the task is to
learn a model that labels a given context (the type and the partially written expression) with
a subset of a fixed finite set of labels (names of existing definitions that would complete the
expression).

In the recommender-system scenario, by defining an appropriate distance among Agda def-
initions, we can support the search for proper matches among the existing definitions with the
nearest-neighbour algorithm [2]. However, computing the distance among the definitions rep-
resented as abstract syntax trees (ASTs) can be prohibitively inefficient. A machine-learning
solution for this issue is to train an embedding of the definitions to a vector space Rn, where
distances can be efficiently computed. To this end, we can use standard embedding methods,
such as code2vec [1] for embedding ASTs, and word2vec [5] for capturing the semantics of names
used in the definitions (e.g., associativity or inverse). The embeddings’ efficiency is strongly
related to the amount of training data available. For word2vec we can rely on pre-trained
models for English [6], relying on the fact that the identifiers appearing in code use English
words. In the case of code2vec, many training examples can be sampled as leaf-to-leaf paths in
a single syntax tree.

In the second MLC scenario, the search context is defined using a set of features that
the trained model can use to predict the labels. These features can be either based on the
embeddings mentioned above (each feature corresponds to a single vector space dimension)
or derived from a multi-graph representation of the data set. The nodes of the multi-graph
represent ASTs of individual definitions, while the edges correspond to the references among
the definitions. We can then extract the features using walks in the multi-graph [7]. In this
case, the efficiency of machine learning is related to the length of the walks.
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