

Learning Symbol Weights for Clause Selection

Filip Bártek (filip.bartek@cvut.cz) and Martin Suda Czech Institute of Informatics, Robotics and Cybernetics April 19, 2023

This work was supported by the Czech Science Foundation project no. 20-06390Y (JUNIOR grant), the European Regional Development Fund under the Czech project Al&Reasoning no. CZ.02.1.01/0.0/0.0/15_003/00004, the project RICAIP no. 857306 under the EU-H2020 programme, and the Grant Agency of the Czech Technical University in Prague, grant no. SGS20/215/OHK3/3T/37.

Input: Problem in clause normal form (first-order logic clauses)

Proof search state – two sets of clauses:

- Passive
- Active

- 1. Select clause C from Passive.
- 2. Perform all inferences between C and Active.
 - Add the generated clauses to Passive.
 - If the empty clause is generated, terminate.
- 3. Move C from Passive to Active.

Input: Problem in clause normal form (first-order logic clauses)

Proof search state - two sets of clauses:

- Passive
- Active

- 1. Select clause C from Passive.
- 2. Perform all inferences between C and Active.
 - Add the generated clauses to Passive.
 - If the empty clause is generated, terminate.
- 3. Move C from Passive to Active.

Input: Problem in clause normal form (first-order logic clauses)

Proof search state - two sets of clauses:

- Passive
- Active

- 1. Select clause C from Passive.
- 2. Perform all inferences between C and Active.
 - Add the generated clauses to Passive.
 - If the empty clause is generated, terminate.
- 3. Move C from Passive to Active.

Input: Problem in clause normal form (first-order logic clauses)

Proof search state - two sets of clauses:

- Passive
- Active

- 1. Select clause C from Passive.
- 2. Perform all inferences between C and Active.
 - Add the generated clauses to Passive.
 - If the empty clause is generated, terminate.
- 3. Move C from Passive to Active.

Input: Problem in clause normal form (first-order logic clauses)

Proof search state - two sets of clauses:

- Passive
- Active

- 1. Select clause C from Passive.
- 2. Perform all inferences between C and Active.
 - Add the generated clauses to Passive.
 - If the empty clause is generated, terminate.
- 3. Move C from Passive to Active.

Input: Problem in clause normal form (first-order logic clauses)

Proof search state - two sets of clauses:

- Passive
- Active

- 1. Select clause C from Passive.
- 2. Perform all inferences between C and Active.
 - Add the generated clauses to Passive.
 - If the empty clause is generated, terminate.
- 3. Move C from Passive to Active.

Input: Problem in clause normal form (first-order logic clauses)

Proof search state - two sets of clauses:

- Passive
- Active

- 1. Select clause C from Passive.
- 2. Perform all inferences between C and Active.
 - Add the generated clauses to Passive.
 - If the empty clause is generated, terminate.
- 3. Move C from Passive to Active.

Input: Problem in clause normal form (first-order logic clauses)

Proof search state - two sets of clauses:

- Passive
- Active

- 1. Select clause C from Passive. Which one?
- 2. Perform all inferences between C and Active.
 - Add the generated clauses to Passive.
 - If the empty clause is generated, terminate.
- 3. Move C from Passive to Active.

Clause selection by weight

Clau	Jse	Symbol and variable occurrences		
C_1	$E(m(i,x_1),x_1)$	5		
<i>C</i> ₂	$\neg E(m(x_1, x_2), x_3) \lor P(x_1, x_2, x_3)$	9		
÷	÷	÷		

Machine learning for clause selection

How to train clause selection by machine learning?

Training data from a successful proof search:

- ▶ Proof clauses C_+
- ▶ Nonproof selected clauses C_-

Machine learning for clause selection

How to train clause selection by machine learning?

Training data from a successful proof search:

- ▶ Proof clauses C_+
- ▶ Nonproof selected clauses C_-

Clau	se	Occurrence count				
		<i>x</i> *	Ε	Ρ	т	i
<i>C</i> _	$E(m(i, x_1), x_1)$	2	1	0	1	1
C_+	$\neg E(m(x_1, x_2), x_3) \lor P(x_1, x_2, x_3)$	6	1	1	1	0

Clause	Occurrence count			cou	nt	Clause weight $W(C_*)$
	<i>X</i> *	Ε	Ρ	т	i	
<i>C</i> _	2	1	0	1	1	$2w(x_*) + w(E) + w(m) + w(i)$
C_+	6	1	1	1	0	$6w(x_*) + w(E) + w(P) + w(m)$

Clause	Occurrence count			cou	nt	Clause weight $W(C_*)$
	<i>X</i> *	Ε	Ρ	т	i	
<i>C</i> _	2	1	0	1	1	$2w(x_*) + w(E) + w(m) + w(i)$
C_+	6	1	1	1	0	$6w(x_*) + w(E) + w(P) + w(m)$

 $W(C_+) < W(C_-)$ $4w(x_*) + w(P) < w(i)$

Clause	Occurrence count			cou	nt	Clause weight $W(C_*)$
	<i>x</i> *	Ε	Ρ	т	i	
<i>C</i> _	2	1	0	1	1	$2w(x_*) + w(E) + w(m) + w(i)$
C_+	6	1	1	1	0	$6w(x_*) + w(E) + w(P) + w(m)$

 $W(C_+) < W(C_-)$ $4w(x_*) + w(P) < w(i)$

Example solution:

- \blacktriangleright $w(x_*) = 1$
- \blacktriangleright w(P) = 1

Symbol weight recommender

Evaluation

Configuration	Proofs found on 3149 problems				
	Absolute	Relative			
Trained GNN	1494	47.4 %			
Baseline	1439	44.5 %			

Summary

Clause selection

- Prover selects clause with the smallest weight
- Clause weight parameterized by symbol weight
- Trained GNN recommends symbol weights

Training

- ► Training example: clause pair (proof and nonproof) from a successful proof search
- Proxy task: clause ranking (clause pair classification)

Evaluation

Table: Results of the final empirical evaluation. The reported performance is the number of proofs found on the test set (3149 problems) within 5×10^{10} CPU instructions per proof search.

Configuration	Proofs found		
	Absolute	Relative	
Trained graph neural network (GNN)	1494	47.4 %	
Baseline	1439	44.5 %	

Clause weight

Table: Examples of clauses and their symbol-counting weights

$$\begin{array}{ccc} C & W(C) \\ \hline p(X_1, c, X_2) \lor q(X_1) & 3w(X) + w(p) + w(q) + w(c) \\ g(X_1, h(X_2)) \approx f(g(X_1, X_2), X_1) & 5w(X) + w(\approx) + w(f) + 2w(g) + w(h) \\ \neg (h(X_1) \approx h(X_2)) \lor X_1 \approx X_2 & 4w(X) + 2w(\approx) + 2w(h) \end{array}$$

Clause weight

$$W(C) = \sum_{s \in \Sigma \cup \{pprox, X\}} S_C(s) \cdot w(s)$$

Training

- ▶ Training example: Pair of clauses C_+ (proof) and C_- (nonproof)
- Proxy task: Clause pair classification
- ► Example likelihood: $p(C_+, C_-) = \text{sigmoid}(W(C_-) W(C_+))$
 - ▶ p is large when $W(C_-)$ is large and $W(C_+)$ is small
- ▶ Loss: negative log-likelihood $\ell = -\log p(C_+, C_-)$

Symbol weight recommender

- Input: Problem
- Output: Variable and symbol weights
 - Output activation function: a(x) = 1 + softplus(x)

