
Correct-by-construction programming with
generative language models

PAMLTP and DG4D3

Prague, 19 April 2023

Maximilian Doré
maximilian.dore@cs.ox.ac.uk

1 / 9

maximilian.dore@cs.ox.ac.uk


Background

• Project: showing correctness of some algorithms in
topological data analysis.

• Goal is to use correct-by-construction paradigm for
mathematical programs: develop theory and code in the
same language.

• Combines two laborious endeavours:
formalization (of a theory) & verification (of a program)

2 / 9



Correct-by-construction

Correct-by-construction paradigm:
Specification of a program is part of the language, and compiler
ensures that program satisfies specification.

In dependent type theory, this takes the following form:
• given an input 𝑥 ∶ 𝑋,
• the program 𝑝 ∶ 𝑋 → 𝑌 computes an output 𝑝 𝑥,
• which satisfies the specification Spec 𝑥 (𝑝 𝑥).

In summary, we want a term of type

Π𝑋, Σ𝑌 , Spec 𝑋 𝑌

3 / 9



Correct-by-construction

Correct-by-construction paradigm:
Specification of a program is part of the language, and compiler
ensures that program satisfies specification.

In dependent type theory, this takes the following form:
• given an input 𝑥 ∶ 𝑋,
• the program 𝑝 ∶ 𝑋 → 𝑌 computes an output 𝑝 𝑥,
• which satisfies the specification Spec 𝑥 (𝑝 𝑥).

In summary, we want a term of type

Π𝑋, Σ𝑌 , Spec 𝑋 𝑌

3 / 9



A correct-by-construction powerset

Example: Compute the powerset in corr-by-constr fashion.

Idea for how to compute the powerset, in Haskell:

powerset :: [a] -> [[a]]
powerset [] = [[]]
powerset (x:xs) = powerset xs ++ map (x:) (powerset xs)

We want this program to coincide with the usual definition of
powerset, which is our specification:

𝑃 (𝑋) = {𝑌 ∣ 𝑌 ⊆ 𝑋}

Goal: Construct a program in Agda analogous to powerset
which provably satisfies the above definition.

4 / 9



Powerset in Agda
From lists to sets: Given base type 𝐴 with total ordering. Then
sets are ordered lists:

{1, 2, 3} = 1 < 2 < 3

With an apt ordering on sets, we can also define families of sets:

{{2, 3}, {1, 2, 3}} = (2 < 3) ≪ (1 < 2 < 3)

Steps:
• Program powerset ∶ set 𝐴 → set (set 𝐴).

• Give functional program analogous to Haskell code.
• Prove that powerset produces an ordered list.

• Prove that any 𝑌 computed by powerset 𝑋 is subset of 𝑋.
• Prove that every subset of 𝑋 is computed by powerset 𝑋.

Then we have a term of type

Π(𝑋 ∶ set), Σ(𝑃 ∶ family), Π(𝑌 ∶ set), 𝑌 ∈ 𝑃 ≃ 𝑌 ⊆ 𝑋
5 / 9



Correctness of powerset function
powerset-corr : {xs : List carrier} (ds : ordered xs)

→ {ys : List carrier} (es : ordered ys)
→ (ys , es) ∈𝑙 powerset xs ds → (ys , es) ⊆ (xs , ds)

powerset-corr {[]} ds {ys} es P = subst (_⊆𝑙 []) (sym ys≡[]) (⊆𝑙-refl []) where
ys≡[] = toList≡ (∈𝑙-singl-extract P)

powerset-corr {x ∷ xs} ds {[]} es P = []⊆𝑙-all
powerset-corr {x ∷ xs} ds {y ∷ ys} es P

with ++-dec discreteSet _ (powerset xs (⊏-tails ds)) (powerset-insert x xs ds) P
... | inl Q = ⊆𝑙-weaken IH where

IH : (y ∷ ys , es) ⊆ (xs , ⊏-tails ds)
IH = powerset-corr (⊏-tails ds) es Q

... | inr Q = subst (_⊆𝑙 (x ∷ xs)) (cong (_∷ ys) (sym headLemma)) (⊆𝑙-insert x IH)
where
tailLemma : (ys , ⊏-tails es) ∈𝑙 powerset xs (⊏-tails ds)
tailLemma = (insertL-tail es (powerset xs (⊏-tails ds)) (x⊏Lpowerset x _ ds) Q)
IH : (ys , ⊏-tails es) ⊆ (xs , ⊏-tails ds)
IH = powerset-corr (⊏-tails ds) (⊏-tails es) tailLemma
headLemma : y ≡ x
headLemma = insertL-head es (powerset xs (⊏-tails ds)) (x⊏Lpowerset x _ ds) Q

6 / 9



In Lean

def powerset (s : finset 𝛼) : finset (finset 𝛼) :=�
s.1.powerset.pmap finset.mk $𝜆
t h, nodup_of_le (mem_powerset.1 h) s.nodup,

s.nodup.powerset.pmap $ 𝜆a ha b hb, congr_arg finset.�val

@[simp] theorem mem_powerset {s t : finset 𝛼} :
s ∈ powerset t ↔s ⊆t :=

by cases s;
simp only [powerset, mem_mk, mem_pmap, mem_powerset,

exists_prop, exists_eq_right];
rw ← val_le_iff

7 / 9



Comparing the proofs in Agda and Lean

• Lean code way shorter (3 lines vs ∼ 200 lines).
• Lean has tactics (+ black magic).
• Agda code is like a Haskell program, also proofs are

manipulated in a functional style.

8 / 9



Speculations

• LLMs don’t seem good at reasoning – but they are good at
pattern matching and dealing with unstructured data.

• Working in Agda is tedious: have to write a lot of code.
Advantage for machine learning?
With granular enough level of detail proofs/programs,
finding “templates” and gluing them together might be a
more reliable method than randomly trying tactics.

• Goal: Integrate LLM in Agda mode.
• Typecheck output of LLM directly, if type-checking fails

add error-message to context and run LLM again.
• Synthesize both proofs (terms) and conjectures (types).

9 / 9


