Breaking the diamond in Superposition

Márton Hajdu, Laura Kovács, Michael Rawson, Andrei Voronkov

Superposition calculus (ground)

$$(Sup) \frac{s[u] \bowtie t \lor C \qquad u \simeq w \lor D}{s[w] \bowtie t \lor C \lor D} \qquad \text{where} \qquad \begin{array}{l} (1) \bowtie \in \{\simeq, \neq\}, \\ (2) s \succ t \text{ and } u \succ w, \\ (3) s \bowtie t \succ C \text{ and } u \simeq w \succ D. \end{array}$$

$$(EqRes) \frac{s \not\simeq s \lor C}{C} \qquad \text{where} \qquad s \not\simeq s \succ C.$$

$$(EqFac) \frac{s \simeq t \lor s \simeq u \lor C}{s \simeq t \lor t \not\simeq u \lor C} \qquad \text{where} \qquad \begin{array}{l} (1) \bowtie \in \{\simeq, \neq\}, \\ (2) s \succ t \text{ and } u \succ w, \\ (3) s \simeq t \succ C \text{ and } s \simeq u \succ C. \end{array}$$

Superposition calculus (ground)

$$(Sup) \frac{s[u] \bowtie t \lor C \qquad u \simeq w \lor D}{s[w] \bowtie t \lor C \lor D} \qquad \text{where} \qquad \begin{array}{l} (1) \bowtie \in \{\simeq, \neq\}, \\ (2) s \succ t \text{ and } u \succ w, \\ (3) s \bowtie t \succ C \text{ and } u \simeq w \succ D. \end{array}$$

$$(EqRes) \frac{s \not\simeq s \lor C}{C} \qquad \text{where} \qquad s \not\simeq s \succ C.$$

$$(EqFac) \frac{s \simeq t \lor s \simeq u \lor C}{s \simeq t \lor t \not\simeq u \lor C} \qquad \text{where} \qquad \begin{array}{l} (1) \bowtie \in \{\simeq, \neq\}, \\ (2) s \succ t \text{ and } u \succ w, \\ (3) s \bowtie t \succ C \text{ and } s \simeq w \succ C. \end{array}$$

Diamond property

A binary relation *R* has the diamond property:

$$R^{-1} \cdot R \subseteq R \cdot R^{-1}$$

Diamond property

A binary relation R has the diamond property:

$$R^{-1} \cdot R \subseteq R \cdot R^{-1}$$

Rewriting independent/parallel positions

Given equations $\textcircled{\tiny{}} \simeq \textcircled{\tiny{}}$ for $1 \leq i \leq 3$

Rewriting independent/parallel positions

Given equations $\textcircled{\scriptsize 1} \simeq \textcircled{\scriptsize 1}$ for $1 \leq i \leq 3$

(*) Ideally not performed

Rewriting independent/parallel positions

Given equations $\textcircled{1} \simeq \textcircled{1}$ for $1 \leq i \leq 3$

(*) Ideally not performed

Given equations ① \simeq ① for $1 \le i \le 3$ and term order ① \succ ② \succ ③ \succ ② \succ ② \succ ② \succ 6

Given equations ① \simeq **①** for $1 \le i \le 3$ and term order ① \succ ② \succ ③ \succ **①** \succ ② \succ **②** \succ **②** \succ **c**

(*) Not performed in superposition

Subsumption deals with duplicates!

► Can duplicates be efficiently avoided while remaining complete?

- ► Can duplicates be efficiently avoided while remaining complete?
- ▶ Idea: rewrite a position only if no position to its right (or left) has been rewritten.

$$f(1, f(2, 3))^{\langle \epsilon \rangle} \neq c$$

Superposition calculus (with left-to-right ordered independent rewrites)

$$(Sup) \frac{s[u]_r^{\langle p \rangle} \bowtie t \vee C \qquad u \simeq w^{\langle q \rangle} \vee D}{s[w]_r^{\langle rq \rangle} \bowtie t \vee C \vee D} \qquad \text{where} \qquad \begin{array}{l} (1) \ s \succ t \ \text{and} \ u \succ w, \\ (2) \ s \bowtie t \succ C \ \text{and} \ u \simeq w \succ D, \\ (4) \ p \not\parallel r \ \text{or} \ p <_{lex} r. \end{array}$$

$$(EqRes) \frac{s \not\simeq s \vee C}{C} \qquad \text{where} \qquad s \not\simeq s \succ C.$$

Experimental results

Running Vampire on TPTP problems with -sa discount:

Timeout	Master	New branch	Total
10s	10718 (59)	10716 (57)	25257
60s	11536 (81)	11524 (69)	25251

In general, it saturates the search space a bit faster.

Where is the new approach worse on some problems?

Where is the new approach worse on some problems?

Given $\textcircled{1} \simeq \textcircled{1}$ for $1 \leq i \leq 3$ and $f(\cdot) \succ c$

If the clauses get activated at timepoints $t_1 < t_2 < t_3 < t_4$, then if $t_1 \ll t_2$, there is a good chance that $t_3 \ll t_4$. Finding the same proof takes longer!

Using mixed rewrite orders

▶ **Idea:** change the order from left-to-right (\rightarrow) to right-to-left (\leftarrow) when needed

Using mixed rewrite orders

- ▶ **Idea:** change the order from left-to-right (\rightarrow) to right-to-left (\leftarrow) when needed
- ightharpoonup If the clause with the rightmost rewrite is activated first, use \leftarrow

Future work & conclusion

- Still underwhelming results
- ▶ The number of diamonds a certain clause participates in is often huge
- ▶ It is possible to extend to arbitary permutations (but worth it?)
- Prove completeness
- ► Find benchmarks/strategies where this is useful