
Machine Learning for
Context-Sensitive
Search in Agda

Andrej Bauer13, Matej Petković12, Ljupčo
Todorovski12

University of Ljubljana, Faculty of Mathematics and Physics
Jožef Stefan Institute, Ljubljana, Slovenia
Institute for Mathematics, Physics and Mechanics, Ljubljana, Slovenia

Agenda

● Motivation
● Data Transformation
● Two learning approaches
● Efficiency Issues and Solutions

… is a dependently typed functional programming language that
is mostly used as a proof assistant

We formulated a theorem …

… i.e., the type of an expression, but – when writing the proof (the body
of the expression)

we do not remember/ know which lemma from the library to use.

A recommender system should suggest us appropriate candidates
given the current context.

Machine learning (ML) to the rescue

The task of learning a model that gives us suggestions can
be formalized in ML as
● creating a recommender system,
● solving a multi-label classification.

but first … we need to represent Agda code in
machine-learnable format.

Conversion of a definition

Agda code 1 plus (if true then 4 else 5)

Abstract
Syntax
Tree

s-expression (plus (1) (if_then_else_ (true) (4) (5)))

Conversion of a library

where each green node represents an AST.

Agda libraries: stdlib, unimath

function 20 000

constructor 1000

record 600

data 150

axiom 100

primitive 100

sort 10

Some statistics: graphs

STDLIB:

● 16,193 nodes
● 223055 edges
● 7 weak components:

○ max: 16,187
● 14,459 strong

components:
○ max: 30

UNIMATH:

● 11,846 nodes
● 176,330 edges
● 7 weak components:

○ max: 11,838
● 11,355 strong

components:
○ max: 16

Recommender system

Given some database of candidates, use the context that
user provided (a query) to find an appropriate response.

In our case:

● database = an Agda library of definitions
● query = a partially written definition

Recommender system

Given a definition that is still missing some connections to
the other definitions in a library, identify the missing edges.

To make a prediction/suggestion, use

● the definition itself (e.g., words used),
● the position of the definition in the graph.

Recommender system

The recommendations are currently made in two stages:

● compute the fitness of every other definition in the
library

● sort the candidates with respect to their fitness and
return the top K ones

Efficiency issues #1

1. O(n2) fitness computations
2. Potentially very expensive fitness definition:

○ direct comparison of ASTs

Currently, we do not need the solution for 1, but at some
point approximations would be needed.

The second issue was addressed with embeddings.

Embeddings

Most of the machine learning models can handle only
vectors of numbers.

Instead of developing new methods (that would handle
words, images or graphs), researchers tend to develop
embeddings - mappings that map complex data to ℝn.

Relevant embeddings

● word2vec (Mikolov et al.)
● node2vec (Grover et al.)
● code2vec (Alon et al.)
● …

Efficiency issues #2

Those embeddings are based on neural networks, which
need a lot of examples to achieve great performance.

We use the pretrained models (instead of, for example,
learning English from scratch) – if possible.

Multi-label classification

● Classification: given a finite set of mutually exclusive
classes, assign a given object the correct class
○ assign a person their blood type

● Multi-label classification: given a finite set of labels,
assign a given object all the relevant labels
○ assign an image all the objects it contains

Multi-label classification in our case

● Every label in the label corresponds to a definition in a library
● A label d is relevant for a definition D iff D references d

● The context is provided by a fixed set of features that describe
the definition. Model uses them to decide which labels are
relevant

● Those features can be anything: embeddings, graph-based …

Preliminary experiments

Nearest neighbours: bag of words numba

Nearest neighbours: TFIDF Sparse representation (and distance
computation)

Nearest neighbours: word2vec
embeddings

Pretrained models

Analogies (left-thm uses
left-lemma, then right-thm uses
??)

O(|E| |V|2): extensive vectorisation and usage of
C-compiled libraries

Neighbours of neighbours C-compiled libraries

… …

Thank you.

Questions?

Jaccard distance

● Defined as

where A and B are two (multi)sets
● In our case, A and B are the multisets of “words” that

describe a given definition.

Jaccard distance: example

Recall the definition of ℕ:

Its multiset is A = {data: 1, ℕ: 4, where: 1, zero: 1, suc: 1}.

Some preprocessing is done, e.g., left-inverse is split to
words left and inverse.

TFIDF-based distance

● term frequency–inverse document frequency
● In our case, document = s-expression

TFIDF: comments

● TFIDF actually maps a document into n-dimensional
Euclidean space where N is the number of different terms:
 vec(d) = [tfidf(d, w1), …, tfidf(d, wN)]

● After TFIDF is computed for every s-expression, standard
Euclidean distance for finding nearest neighbours can be
used

Examples

d = 0.0049

d = 0.0871

