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… is a dependently typed functional programming language that 
is mostly used as a proof assistant



We formulated a theorem …

… i.e., the type of an expression, but – when writing the proof (the body 
of the expression)

we do not remember/ know which lemma from the library to use.

A recommender system should suggest us appropriate candidates 
given the current context.



Machine learning (ML) to the rescue

The task of learning a model that gives us suggestions can 
be formalized in ML as
● creating a recommender system,
● solving a multi-label classification.

but first … we need to represent Agda code in 
machine-learnable format.



Conversion of a definition

Agda code 1 plus (if true then 4 else 5)

Abstract
Syntax
Tree

s-expression (plus (1) (if_then_else_ (true) (4) (5)))



Conversion of a library

where each green node represents an AST.



Agda libraries: stdlib, unimath

function 20 000

constructor 1000

record 600

data 150

axiom 100

primitive 100

sort 10



Some statistics: graphs

STDLIB:

● 16,193 nodes
● 223055 edges
● 7 weak components:

○ max: 16,187
● 14,459 strong 

components:
○ max: 30

UNIMATH:

● 11,846 nodes
● 176,330 edges
● 7 weak components:

○ max: 11,838
● 11,355 strong 

components:
○ max: 16



Recommender system

Given some database of candidates, use the context that 
user provided (a query) to find an appropriate response.

In our case:

● database = an Agda library of definitions
● query       = a partially written definition



Recommender system

Given a definition that is still missing some connections to 
the other definitions in a library, identify the missing edges.

To make a prediction/suggestion, use

● the definition itself (e.g., words used),
● the position of the definition in the graph.



Recommender system

The recommendations are currently made in two stages:

● compute the fitness of every other definition in the 
library

● sort the candidates with respect to their fitness and 
return the top K ones



Efficiency issues #1

1. O(n2) fitness computations
2. Potentially very expensive fitness definition:

○ direct comparison of ASTs

Currently, we do not need the solution for 1, but at some 
point approximations would be needed.

The second issue was addressed with embeddings.



Embeddings

Most of the machine learning models can handle only 
vectors of numbers.

Instead of developing  new methods (that would handle 
words, images or graphs), researchers tend to develop  
embeddings - mappings that map complex data to ℝn.



Relevant embeddings

● word2vec (Mikolov et al.)
● node2vec (Grover et al.)
● code2vec (Alon et al.)
● …



Efficiency issues #2

Those embeddings are based on neural networks, which 
need a lot of examples to achieve great performance.

We use the pretrained models (instead of, for example, 
learning English from scratch) – if possible.



Multi-label classification

● Classification: given a finite set of mutually exclusive 
classes, assign a given object the correct class
○ assign a person their blood type

● Multi-label classification: given a finite set of labels, 
assign a given object all the relevant labels
○ assign an image all the objects it contains



Multi-label classification in our case

● Every label in the label corresponds to a definition in a library
● A label d is relevant for a definition D iff D references d

● The context is provided by a fixed set of features that describe 
the definition. Model uses them to decide which labels are 
relevant

● Those features can be anything: embeddings, graph-based …



Preliminary experiments

Nearest neighbours: bag of words numba

Nearest neighbours: TFIDF Sparse representation (and distance 
computation)

Nearest neighbours: word2vec 
embeddings

Pretrained models

Analogies (left-thm uses 
left-lemma, then right-thm uses 
??)

O(|E| |V|2): extensive vectorisation and usage of 
C-compiled libraries

Neighbours of neighbours C-compiled libraries

… …



Thank you.

Questions?











Jaccard distance

● Defined as

where A and B are two (multi)sets
● In our case, A and B are the multisets of “words” that 

describe a given definition.



Jaccard distance: example

Recall the definition of ℕ:

Its multiset is A = {data: 1, ℕ: 4, where: 1, zero: 1, suc: 1}.

Some preprocessing is done, e.g., left-inverse is split to 
words left and inverse.



TFIDF-based distance

● term frequency–inverse document frequency
● In our case, document = s-expression



TFIDF: comments

● TFIDF actually maps a document into n-dimensional 
Euclidean space where N is the number of different terms:
     vec(d) = [tfidf(d, w1), …, tfidf(d, wN)]

● After TFIDF is computed for every s-expression, standard 
Euclidean distance for finding nearest neighbours can be 
used



Examples

d = 0.0049

d = 0.0871


