
Deploying Neural Models for 
Theorem Proving

Or, a bag of tricks to make Stuff Go Faster and thereby hasten the arrival of 
the semantic AI paradise of computer-understandable math and science

Michael Rawson



What’s a Neural Model?

● Blob of linear algebra
● Architecture + learned weights
● Relatively simple to evaluate
● Harder to train
● Slow! If it’s not slow, make it bigger.

○ Faster on GPU
● Libraries: PyTorch, TensorFlow etc
● Input: “tensors”
● Output: policy or value

https://xkcd.com/1838/



What’s a Theorem Prover?

● Why, it’s a system that proves theorems
○ By search, we’re not magicians
○ Classical first-order. Fight me.

● Fast exploration of search space critical for performance
● Want to have a good heuristic for where to go

○ But we don’t know many good ones
● This is what we use the neural model for!
● Two flavours:

○ Saturation: E, Vampire, SPASS, Prover9, OTTER, iProver (sorry), SMT solvers (kinda), …
○ Backtracking: leanCoP, SETHEO, rlCoP, plCoP, (Fe)MaLeCoP, other CoPs…



The Aim of the Game

● Need to plug the big heavy NN into the ATP somehow
● Performance is completely destroyed, even if the ATP is “smart” now
● Fundamental problem
● Many ways to Not Do That:

○ Smaller, lighter, possibly non-neural models
○ Use the NN only occasionally
○ Use the NN at first, then stop at some point (DNGPS)
○ Staged evaluation with increasingly-complex models (ENIGMA)
○ …

● Circa 2019, I wanted to do this anyway, ignoring good advice.



Performance Indicators

● Problems solved!
● Inferences/sec
● NN state evaluation throughput
● NN state evaluation latency
● Startup time
● NN accuracy if approximated
● ???



Asynchronous Evaluation



Very Briefly

● On the CPU, do inference work
● On the GPU, do evaluation work
● GPU typically slower than CPU, plays catch-up
● CPU assigns uniform policy to unevaluated stuff
● CPU never “stalls” waiting for GPU
● Only really works for backtracking systems
● Only really works for policy: what value do you choose?



Sketch Asynchronous Evaluation



Integrating NNs Into ATPs



A Dirty Hack

● Have trained model in e.g. TensorFlow, PyTorch
● Conventional:

○ Save model (weights + arch) to disk somehow
○ Load model again
○ Do inference using library routines

● Dirty hack:
○ Save only weights to disk as a header file
○ Implement your own forward pass (!)
○ Compile weights into your ATP from header file
○ ???
○ Profit!



Dirty Hack: pros…

● No dependence on third-party library for final binary
● Seriously improved startup time: several seconds to 0.

○ Matters for experiments with 1000s of problems
● No encoding/decoding at interface of ATP/NN: use your own data

○ And DIY parallelism!
● Compiler can do constant folding, loop unrolling, loop fusion etc.
● Cute domain/model-specific tricks (more later)
● Can use Geoff’s computers without installing PyTorch on StarExec
● But…



…and cons

● Have to implement your own forward pass
● Not so trivial to do hardware acceleration
● Lost library optimisations



Fused and Reused

● Memory reuse, e.g. in-place ReLU
● Tensor allocation reuse
● Fusion: BatchNorm + preceding convolution
● Fun with combination of above and e.g. residual networks

Image from “Densely Connected 
Convolutional Networks”, Huang et al.



Hardware Acceleration



Hardware Acceleration Primer

● As models/data get bigger, typical CPUs start to suffer
● If you have a GPU, can abuse it for faster inference

○ Even cheap models! Mine is ancient GT730.
● Put suitable tasks on GPU, do other stuff with CPU
● GPUs:

○ Have huge numbers of “cores”
○ Actually nested (sub-)processors with shared resources
○ Surprising cache effects
○ Low clock speeds
○ Deep instruction pipelines
○ Does not enjoy (conditional) branching at all



Hardware Acceleration Landscape

There’s a competing ecosystem of accelerator cards at knock-down prices, but 
you can program for any card or CPU using the OpenCL API, a widely-supported 
and efficient cross-platform abstraction.

Lies. There is only CUDA, devourer of hopes and dreams large matrices.



CUDA: the briefest of introductions



CUDA

● If you have an NVIDIA card, you can use CUDA.
● Once you get past this unpleasantness, can be quite nice:

○ Generally well-supported (by NVIDIA) on various platforms
○ Relatively stable API - if you have an old card, don’t use the fancy stuff
○ Libraries for e.g. BLAS, sparse matrices
○ Nice tooling e.g. profilers
○ Ridiculous performance if you get it right

● Write something like C++, launch kernels on the GPU.
● In practice, need to tune some magic constants for maximum performance.



CUDA Programming Model

● CUDA mini-programs called kernels
● Executing kernel (with parameters etc) called a thread
● Grouped into thread blocks
● Thread blocks distributed over streaming multiprocessors
● GPUs may have several such SMs
● There may be performance interactions at every level
● RTFM, it’s actually OK.
● Interaction with CPU:

○ Data must be explicitly uploaded/downloaded
○ Operations can be asynchronous wrt CPU - very useful

● But wait, there’s more! Atomics, streams, cooperative groups, dynamic parallelism, textures, compute graphs, …





https://github.com/MichaelRawson/lazycop/blob/master/nn/cuda/model.cu

https://github.com/MichaelRawson/lazycop/blob/master/nn/cuda/model.cu


Results

● System (2020) with trained model makes more inferences/sec
○ Still a little weirded out by this tbh

● Hundreds to thousands of policy evaluations per second
● Fully end-to-end GNN, mid-size model
● Low GPU memory usage
● Near 100% utilisation of compute - hit thermal cutout once in summer!
● …the numbers for the associated publication were a bit better?
● Kept my sanity by not trying to use something like TensorFlow Serving

○ Not that such things are bad…square peg, round hole



Other Things I Haven’t Done

● NNUE - only update stuff that changed, from computer Shogi
● Similar: Martin’s “historical” technique for Deepire
● Use off-the-shelf software to apply further NN optimisations
● For example, quantisation

○ But my card doesn’t have this…
● Persistent server architecture: can’t figure out how to do IPC fast enough



Recap

● Worth paying attention to performance, can be an easy win
● Asynchronous evaluation of NN avoids stalling inference
● Compiling weights into ATP is horrible but has many advantages
● Hardware acceleration worthwhile

○ Significant effort to do manually
○ But mostly learning how to do a new kind of programming
○ Probably easier the more you do it?



Questions


