Deploying Neural Models for
Theorem Proving

Or, a bag of tricks to make Stuff Go Faster and thereby hasten the arrival of
the semantic Al paradise of computer-understandable math and science

Michael Rawson

TECHNISCHE
UNIVERSITAT
WIEN

What's a Neural Model?

Blob of linear algebra
Architecture + learned weights
Relatively simple to evaluate
Harder to train

Slow! If it's not slow, make it bigger.

o Faster on GPU
Libraries: PyTorch, TensorFlow etc

Input: “tensors”
Output: policy or value

THIS 1S YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE WRONG?)

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

https://xkcd.com/1838/

What's a Theorem Prover?

e Why, it's a system that proves theorems

o By search, we're not magicians
o Classical first-order. Fight me.

e Fast exploration of search space critical for performance

e \Want to have a good heuristic for where to go .
o But we don’'t know many good ones

e This is what we use the neural model for!
e Two flavours:

o Saturation: E, Vampire, SPASS, Prover9, OTTER, iProver (sorry), SMT solvers (kinda), ...

o Backtracking: leanCoP, SETHEO, rICoP, plCoP, (Fe)MaLeCoP, other CoPs...

The Aim of the Game

Need to plug the big heavy NN into the ATP somehow

Performance is completely destroyed, even if the ATP is “smart” now
Fundamental problem

Many ways to Not Do That:

Smaller, lighter, possibly non-neural models

Use the NN only occasionally

Use the NN at first, then stop at some point (DNGPS)

Staged evaluation with increasingly-complex models (ENIGMA)

o O O O

(@)

e Circa 2019, | wanted to do this anyway, ignoring good advice.

Performance Indicators

Problems solved!
Inferences/sec

NN state evaluation throughput
NN state evaluation latency
Startup time

NN accuracy if approximated
??7?

Asynchronous Evaluation

Very Briefly

On the CPU, do inference work

On the GPU, do evaluation work

GPU typically slower than CPU, plays catch-up

CPU assigns uniform policy to unevaluated stuff

CPU never “stalls” waiting for GPU

Only really works for backtracking systems

Only really works for policy: what value do you choose?

Sketch Asynchronous Evaluation

Integrating NNs Into ATPs

A Dirty Hack

e Have trained model in e.g. TensorFlow, PyTorch

e Conventional:

o Save model (weights + arch) to disk somehow

o Load model again

o Do inference using library routines
e Dirty hack:

o Save only weights to disk as a header file
Implement your own forward pass (!)
Compile weights into your ATP from header file
2?27?

Profit!

o O O O

Dirty Hack: pros...

No dependence on third-party library for final binary

Seriously improved startup time: several seconds to 0.
o Matters for experiments with 1000s of problems

No encoding/decoding at interface of ATP/NN: use your own data
o And DIY parallelism!

Compiler can do constant folding, loop unrolling, loop fusion etc.
Cute domain/model-specific tricks (more later)

Can use Geoff’'s computers without installing PyTorch on StarExec
But...

...and cons

e Have to implement your own forward pass
e Not so trivial to do hardware acceleration
e Lost library optimisations

Fused and Reused

Memory reuse, e.g. in-place RelLU

Tensor allocation reuse

Fusion: BatchNorm + preceding convolution

Fun with combination of above and e.g. residual networks

Image from “Densely Connected
Convolutional Networks”, Huang et al.

Hardware Acceleration

Hardware Acceleration Primer

e As models/data get bigger, typical CPUs start to suffer

e If you have a GPU, can abuse it for faster inference
o Even cheap models! Mine is ancient GT730.

e Put suitable tasks on GPU, do other stuff with CPU
o GPUs:

Have huge numbers of “cores”

Actually nested (sub-)processors with shared resources
Surprising cache effects

Low clock speeds

Deep instruction pipelines

Does not enjoy (conditional) branching at all

o o0 O O O O

Hardware Acceleration Landscape

There’s a competing ecosystem of accelerator cards at knock-down prices, but
you can program for any card or CPU using the OpenCL API, a widely-supported
and efficient cross-platform abstraction.

7 A
OpenCL

Lies. There is only CUDA, devourer of hepes-and-dreams large matrices.

CUDA: the briefest of introductions

W
iy,

CUDA

e If you have an NVIDIA card, you can use CUDA.

e Once you get past this unpleasantness, can be quite nice:
Generally well-supported (by NVIDIA) on various platforms

Relatively stable API - if you have an old card, don’t use the fancy stuff
Libraries for e.g. BLAS, sparse matrices

Nice tooling e.g. profilers

Ridiculous performance if you get it right

e Write something like C++, launch kernels on the GPU.
e |n practice, need to tune some magic constants for maximum performance.

o O O O O

CUDA Programming Model

CUDA mini-programs called kernels

Executing kernel (with parameters etc) called a thread
Grouped into thread blocks

Thread blocks distributed over streaming multiprocessors
GPUs may have several such SMs

There may be performance interactions at every level
RTFM, it's actually OK.

Interaction with CPU:

o Data must be explicitly uploaded/downloaded
o Operations can be asynchronous wrt CPU - very useful

e But Wait, there’s more! Atomics, streams, cooperative groups, dynamic parallelism, textures, compute graphs, ..

? S 0.3.25 S 0'3.3 S 0.3'35 S 0'3.4 S 0.3‘}5 S 0'3.5 S

l cudaMemcpyAsync

Vecl... Vecl... Veclof... VecT..|Vec5... Vecl... Veclof32x(int*, int*, int*, int)

- - -
" " -
‘ " -
| I| I| I| .

| \ecl... Vecl... Veclof... VecT...|Vec5... Vecl... Veclof32x(int*, int*, int*, int)

https://github.com/MichaelRawson/lazycop/blob/master/nn/cuda/model.cu

https://github.com/MichaelRawson/lazycop/blob/master/nn/cuda/model.cu

Results

System (2020) with trained model makes more inferences/sec
o Still a little weirded out by this tbh

Hundreds to thousands of policy evaluations per second

Fully end-to-end GNN, mid-size model

Low GPU memory usage

Near 100% utilisation of compute - hit thermal cutout once in summer!
...the numbers for the associated publication were a bit better?

Kept my sanity by not trying to use something like TensorFlow Serving
o Not that such things are bad...square peg, round hole

Other Things | Haven't Done

NNUE - only update stuff that changed, from computer Shogi

Similar: Martin’s “historical” technique for Deepire
Use off-the-shelf software to apply further NN optimisations

For example, quantisation
o But my card doesn’t have this...

e Persistent server architecture: can'’t figure out how to do IPC fast enough

Recap

Worth paying attention to performance, can be an easy win
Asynchronous evaluation of NN avoids stalling inference
Compiling weights into ATP is horrible but has many advantages

Hardware acceleration worthwhile
o Significant effort to do manually
o But mostly learning how to do a new kind of programming
o Probably easier the more you do it?

Questions

