Credo quia absurdum (?)

Proof generation and challenges of proof generation

Stephan Schulz

Qm

uuuuuuuuuuuuuuuu

«««««««««

Agenda

ﬂ Structure and Representation of Proofs
@ Proof Generation

e Proof Applications

0 Challenges

e Conclusion

Structure and Representation of Proofs

Refutational Theorem Proving

(A1, As, ..., A} = C

Refutational Theorem Proving
(A1, Az,...,As} = C
iff

{A1, Az, ..., Ay, —C} is unsatisfiable

Refutational Theorem Proving

{A1,As,..., Al EC
iff
{A1, Az, ..., Ay, —C} is unsatisfiable
iff

cnf({A1, Ao, Ap, —C}) is unsatisfiable

Refutational Theorem Proving

{A1,As,... A} EC
iff
{A1, Az, ..., Ay, —C} is unsatisfiable
iff
cnf({A1, Ao, Ap, —C}) is unsatisfiable

iff

enf({Ay, Az, An, ~C}) I O

Refutational Theorem Proving

{A1,As,...,An} EC
iff
{A1, Ao, ..., An,—C} is unsatisfiable
iff
cnf({A+, Az, Ap, —C}) is unsatisfiable
iff

cnf({Ay, Az, A, ~C}) I O

Clausification

Refutation/
Saturation

Ideal: Proofs as Sequences of Proof Steps

» A derivation is a list of steps

» Each step carries a clause/formula
» Each step is either. ..

» Assumed (e.g. axioms, conjecture)
» Logically derived from earlier steps

» A proof is a derivation that either. ..

» derives the conjecture
» derives a contradiction from the negated conjecture

Good mental model!

Reality: Proofs as Sequences of Proof Steps

» Initial clauses/formulas
» Axioms/Conjectures/Hypotheses
» Justified by assumption

» Derived clauses/formulas

» Justified by reference to (topologically) preceding steps
» Defined logical relationship to predecessors

» Most frequent case: theorem of predecessors
» Exceptions: Skolemization, negation of conjecture, ...
» (Introduced definitions)
» Don't affect satisfiability/provability
» Justified by definition

TPTP-3 language

» Consistent syntax for different classes
» CNF is sub-case of FOF
» FOF is sub-case of TFF
» Applicable for a wide range of applications

» Problem specifications
» Proofs/derivations
» Models

» Easily parsable

» Prolog-parsable
» Lex/Yacc grammar
» Recursive-descent with 1-token look-ahead

» Widely used and supported

» CASC
» Major provers (E, SPASS, Vampire, iProver, ...)
» Used by integrators

Example

fof(c_0_0, conjecture, (?[X3]: (human (X3)&X3!=john)), file(’humen.p’, someone_not_john)).
fof(c_0_1, axiom, (?[X3]: (human (X3)&grade (X3)=a)), file(’humen.p’, someone_got_an_a)) .
fof(c_0_2, axiom, (grade(john)=f), file(’humen.p’, Jjohn_failed)).
fof(c_0_3, axiom, (a!=f), file(’humen.p’, distinct_grades)).
fof (c_0_4, negated_conjecture, (7 (?[X3]: (human (X3)&X3!=john))),

inference (assume_negation, [status (cth)], [c_0_0])) .
fof (c_0_5, negated_conjecture, (![X4]:(human(X4) |X4=7john)),

inference (variable_rename, [status (thm)], [inference (fof_nnf, [status (thm)], [c_0_4]1)1)) .
fof(c_0_6, plain, ((human(eskl_0)&grade(eskl_0)=a)),
inference (skolemize, [status(esa)], [inference (variable_rename, [status (thm)], [c_0_11)1)).
cnf (c_0_7,negated_conjecture, (X1=john| "human (X1)),
inference (split_conjunct, [status (thm)], [c_0_51)) .
cnf (c_0_8,plain, (human(esk1_0)),
inference (split_conjunct, [status (thm)], [c_0_61)).
cnf (c_0_9,plain, (grade(eskl_0)=a),
inference (split_conjunct, [status (thm)], [c_0_6]1)).
cnf (c_0_10,negated_conjecture, (eskl_0=john),
inference (spm, [status (thm)], [c_0_7, c_0_8])).
cnf (c_0_11,plain, (grade (john)=f),
inference (split_conjunct, [status(thm)], [c_0_2])) .
cnf(c_0_12,plain, (a!=£f),
inference (split_conjunct, [status (thm)], [c_0_3])) .
cnf (c_0_13,plain, ($false),
inference (sr, [status (thm)]
[inference (rw, [status (thm)

, [inference (rw, [status (thm)],
1,[c_0_9, c_0_10]), c_0_111), c_0_12]), ['proof’]).

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_121),
['proof']).

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]1),
c_0_11]1),
c_0_12]1),
['proof']).

Language
(cnf, fof, tff, ...)

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]1),
c_0_11]1),
c_0_12]1),
['proof']).

Language
(cnf, fof, tff, ...)

Name
(arbitrary, but
unique)

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]1),
c_0_11]1),
c_0_12]1),
['proof']).

Language
(cnf, fof, tff, ...)

Type
(axiom,lemma,

)

Name
(arbitrary, but
unique)

conjecture, ..

cnf(c_0_13,
plain
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]1),
c_0_11]1),
c_0_12]1),
['proof']).

Language
(cnf, fof, tff, ...)

Type
(axiom,lemma,

)

Name
(arbitrary, but
unique)

conjecture, .. .
J Logical formula

(the empty clause in this case)

cnf(c_0_13,
plain
($false)+
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(zw, [status(thm)],
[c_0_9, c_0_10]),
c_0_11]1),
c_0_12]1),
['proof']).

Language
(cnf, fof, tff, ...)

Type
(axiom,lemma,

)

Name
(arbitrary, but
unique)

conjecture, .. .
J Logical formula

(the empty clause in this case)

cnf(c_0_13,
plain
($false)+
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(zw, [status(thm)],
[c_0_9, c_0_10]),
c_0_11]1),
c_0_12]1),
['proof']).

Source

(derivation from premises)

Language
(cnf, fof, tff, ...)

Type
(axiom,lemma,

)

Name
(arbitrary, but
unique)

conjecture, .. .
J ! Logical formula

(the empty clause in this case)

cnf(c_0_13,
plain
($false)+
inference(sr, [status(thm)],
[inference(rw, [status(thm)],

[inference(zw, [status(thm)],
[c_0_9, c_0_10]),

c_0_11]1),

c_0_12]),

['proof!]).

Source

Optional “useful
information” (this step
concludes the proof)

(derivation from premises)

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_121),
['proof']).

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]1),
c_0_11]1),
c_0_12]1),
['proof']).

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(xw, [status(thm)],
[inference(zw, [status(thm)],
[c_0_9, c_0_101),
c_0_111),
c_0_12]1),
['proof']).

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],

[inference (rw, [status (thm)],

[inference (xw, [status(thm)],

[c_0.9, c_0_10D),
©0_11D),
co_12D),

['proof']).

“Useful
information”: logical
status (formula is
theorem of premises)

cnf(c_0_13,
plain,
($false),
inference (

, [statug(thm)],
[inference (rw, [status (thm)],
[inference (xw, [status(thm)],
[c_0_9, c_0_101),
c.0_111),
€.0.12]),

['proof']).

“Useful
information”: logical
status (formula is
theorem of premises)

cnf(c_0_13,
plain,
($false),
inference (

, [statug(thm)],
[inference (rw, [status (thm)],
[inference (xw, [status(thm)],

[c-0_9, c_0_101),
011D,

co_12D),

['proof']).

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]1),
c_0_11]1),
c_0_12]1),
['proof']).

cnf (c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_11]1),
c_0_12]),
['proof']).

c_0_9: grade(eskl_0)=a
c_0_10: eskl_O=john
c_0_11:grade(john)=f
c_0_12: a'=f

cnf (c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_11]1),
c_0_12]),
['proof']).

c_0_9: grade(eskl_0)=a
c_0_10: eskl_O=john
c_0_11:grade(john)=f
c_0_12: a'=f

Innermost inference:
Rewrite ¢c_0_9 with
c_0_10

cnf (c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_11]1),
c_0_12]),
['proof']).

c_0_9: grade(eskl_0)=a
c_0_10: eskl_O=john
c_0_11:grade(john)=f
c_0_12: a'=f

Innermost inference:
Rewrite ¢c_0_9 with
c_0_10

Intermediate
inference: Rewrite the
result of the innermost

cnf(c_0_13, inference with
plain, c_0_11
($false),

inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_101),
c_0_11]1),
c_0_12]),
['proof']).

c_0_9: grade(eskl_0)=a
c_0_10: eskl_O=john
c_0_11:grade(john)=f
c_0_12: a'=f

Innermost inference:
Rewrite ¢c_0_9 with
c_0_10

Outermost (final)
inference: Cut off a literal from
the result of the intermediate
inference with c_0_12

cnf (c_0_13,
plain,
($false),
inference(sr, [status(thm)],

[inference(rw, [status(thm)],

Intermediate
inference: Rewrite the
result of the innermost
inference with
c_0_11

[inference(rw, [status(thm)],

c_0_11]1),
c_0_12]),
['proof']).

c_0_9: grade(eskl_0)=a
c_0_10: eskl_O=john
c_0_11:grade(john)=f
c_0_12: a'=f

[c_0_9, c_0_10]),

Innermost inference:
Rewrite ¢c_0_9 with
c_0_10

fof(c_0_1,
axiom,
(?[X3]: (human (X3) &grade (X3)=a)),
file("humen.p’, someone_got_an_a)) .

TPTP v3 idiosyncrasies

» No inference semantics

» Rules are just names
» Rules are system-dependent

» Incomplete inference description

» “Rules are just names”
» No wide support for position information

TPTP v3 idiosyncrasies

» No inference semantics

» Rules are just names
» Rules are system-dependent

» Incomplete inference description

» “Rules are just names”
» No wide support for position information

» Workarounds:

» Inference status
» Proof reconstruction

Refutational Theorem Proving

{A1,As,...,An} EC
iff
{A1, Ao, ..., An,—C} is unsatisfiable
iff
cnf({A+, Az, Ap, —C}) is unsatisfiable
iff

cnf({Ay, Az, An, ~C}) - O

Clausification

Refutation

Clausification and Saturation

» Clausification
» Terminating
» (Usually) deterministic
» (Usually) non-destructive
» Sometimes done by external tool

» Saturation

» Many degrees of freedom
» Arbitrary search time
» Generating inferences
> Create new clauses
» Necessary for completeness
» Simplifying inferences
» Modify/remove existing clauses
» Necessary for performance

Clausification and Saturation

» Clausification

» Terminating
» (Usually) deterministic

» (Usually) non-destructive > Rleco.r]f."”g. .
» Sometimes done by external tool clausl ication s
straightforward

> .
Saturation » ...but not always
» Many degrees of freedom done

» Arbitrar rch tim
> Genera{irf;?n?er;ncis > Efficiently recording
> Create new clauses saturation is difficult
> Necessary for completeness » ...some settle for
» Simplifying inferences inefficient
» Modify/remove existing clauses
» Necessary for performance

Deduction vs. Simplification

s~tvS u#vVvR

» Superposition
o(ulp<+tj2vvSVvVR)

if o = mgu(ulp,s), [...]

s~t u#2vvR

» Rewriting

s~t up<+o(t))2vVR

if ulp = o(s) and o(s) > o(t)

Deduction vs. Simplification

s~tvS u#vVvR

» Superposition

» Generatin
olulp =1t zvVSVHR) im‘erenclesg
if o = mgu(ulp,s), [...] clreate new
clauses

s~t u#2vvR
s~t up<+o(t))2vVR

» Rewriting

if ulp = o(s) and o(s) > o(t)

Deduction vs. Simplification

s~tvS u#vVvR

» Superposition
o(ulp<+tj2vvSVvVR)

if o = mgu(ulp,s), [...]

s~t u#2vvR

» Rewriting
s~t up<+o(t))2vVR

if ulp = o(s) and o(s) > o(t)

» Generating
inferences
create new
clauses

» Simplifiying
inferences
modify or
remove clauses

The Given-Clause Algorithm

» Aim: Move everything
from Uto P

P
(processed clauses)

v
(unprocessed clauses)

The Given-Clause Algorithm

P
(processed clauses)

Gene-
rate

» Aim: Move everything
from Uto P

» Invariant: All
generating inferences
with premises from P
have been performed

The Given-Clause Algorithm

» Aim: Move everything
from Uto P

» Invariant: All
generating inferences
with premises from P
have been performed

» Invariant: Pis
interreduced

P
(processed clauses)

Simpli-
fiable?

v
(unprocessed clauses)

The Given-Clause Algorithm

P
(processed clauses)

Simpli-
fiable?

Cheap
Simplify

Simplify “
v
(unprocessed clauses)

Aim: Move everything
from Uto P

Invariant: All

generating inferences
with premises from P
have been performed

Invariant: P is
interreduced
Clauses added to U
are simplified with
respect to P

Naive Proof Generation

» Basic approach:

» Store (or dump) all intermediate proof steps
» Extract proof steps in post-processing

» Problem: Necessary steps only known after the proof concludes

» Intermediate results are expensive to store
» Example: A ring with X* = X is Abelian
» Proof search (E): 5.4s
» Proof search with inference dump: 11.4s
» Post-processing: 17.6s
» Temporary file size: 480 000 steps, 117MB
» Proof size: 154 steps, 31 kB

Only suitable for small problems/short run-times

Deduction vs. Simplification

s~tvS u#vVvR

» Superposition
o(ulp<+tj2vvSVvVR)

if o = mgu(ulp,s), [...]

s~t u#2vvR

» Rewriting
s~t up<+o(t))2vVR

if ulp = o(s) and o(s) > o(t)

» Generating
inferences
create new
clauses

» Simplifiying
inferences
modify or
remove clauses

Typical Clause Lifecycle

» Generating inference creates a new clause

» Usually paramodulation (but may be equality factoring, equality

resolution, ...)

» This also creates a new clause object
» Simplifying inferences modify the clause

» Multiple rewrite steps

» Possibly literal cutting, trivial literal removal, ...

» This modifies the existing clause object.. .

» ~10 modifications per clause on average (varies wildly)
» Deleting inference removes clause

» Subsumption

» Tautology deletion

» Typically ~90% of all clauses

20

Typical Clause Lifecycle

» Generating inference creates a new clause
» Usually paramodulation (but may be equality factoring, equality
resolution, ...)
» This also creates a new clause object
» Simplifying inferences modify the clause
» Multiple rewrite steps
» Possibly literal cutting, trivial literal removal, ...
» This modifies the existing clause object.. .
» ~10 modifications per clause on average (varies wildly)
» Deleting inference removes clause

» Subsumption
» Tautology deletion
» Typically ~90% of all clauses

90% of clauses eventually deleted, 9 modified versions
= 99% of (logical) clauses are not persistent

20

Typical Clause Lifecycle

» Generating inference creates a new clause
» Usually paramodulation (but may be equality factoring, equality
resolution, ...)
» This also creates a new clause object
» Simplifying inferences modify the clause
» Multiple rewrite steps
» Possibly literal cutting, trivial literal removal, ...
» This modifies the existing clause object. ..
» ~10 modifications per clause on average (varies wildly)
» Deleting inference removes clause

» Subsumption
» Tautology deletion
» Typically ~90% of all clauses

Storing all clauses is too expensive, but
we don’t know a-priori which clauses are needed!

20

Optimized Proof Object Construction

» Observation: Only
clauses in P are
premises!

P
(processed clauses)

Simpli-
fiable?

Cheap
Simplify

Simplify “
(unprocessed clauses)

21

Optimized Proof Object Construction

» Observation: Only
clauses in P are
premises!

» Proof recording:

» Simplified P-clauses

are archived
» Clauses record their

P
(processed clauses)

) history
Gene- s I » Inference rules
rote \ > P-clauses
e Cheap involved
Simplify
Simplify “

v
(unprocessed clauses)

21

Optimized Proof Object Construction

» Observation: Only
clauses in P are
premises!

» Proof recording:

» Simplified P-clauses

are archived
» Clauses record their

P
(processed clauses)

: history
Gene- Tl I > Inference rules
rote \ > P-clauses
Cheap involved
Simplify .
- » Proof extraction
Simplify .
» Track parent relation

(unprocessed clauses) .
» Print proof

21

Optimized Proof Generation

» Example: A ring with X4 = X is Abelian

» Naive approach
Proof search (E): 5.4s
Proof search with inference dump: 11.4s
Post-processing: 17.6s
Temporary file size: 480 000 steps, 117MB
Proof size: 154 steps, 31 kB
timized approach
Proof search (E): 5.5s
Proof search with inference dump: -
Post-processing: -
Temporary file size: -
Proof size: 154 steps, 31 kB
» Example is typical

» Optimized overhead: 0.24% over TPTP 5.4.0

» O

VYVYVEE VYVYYYVYY

22

23

Why Proofs?

» Trust
» inthe ATP system ;
» in the specification

» Understanding
» of the proof
» of the domain \
» of the search process

» Learning
» of important domain statements T
» of search control information o, N ihii K wew JUsT Divios
» of the domain structure

24

Proof Checking

» Semantic proof checking
» Step-by-step check
» Verify semantic status (conclusion can be derived “somehow”
from premises)
» Use alternative theorem prover (or configuration)
» Syntactic proof checking
» Show correctness of individual inference rule applications
» With TPTP syntax: Requires proof reconstruction
» E.g. Metis in Isabelle/Sledgehammer

25

ofc.0.0;cofeure, X0 G5 ejt).

)8 gradoX=a).
).

m. Tofte 0. i fofle_0_3 =1,
ileChumen.p', someone_not_john fil(humen ', someone_got_un_ fleChumen.p', john_fuled)). fleChumen p', distinct_grades)).

negated_conjeeture, (~(7X3]:(human(X3 X3 =i
ference(@sume.negation tatusehlfe.0_01).

)

) N G o 06, (] Ol 07, 01 Tpin radeCm=n.
e | T o o] [t =

anlic ated_coni hnl~human(X1),
el Sonpimelisnusm e 0 -

in, (human(esk1_0)),
o 10061

anlie
inference(sp

cnfie_0_10, negated_conjecture, (esk1_C
inference(spm {staus(thm)] ¢ 0_7.

cni(c_0_9, plin, (grade(esk|_0)=a)
inerenenop. conpnet s e 0_61)-

cafc_0_13, plain, (Sfalsc),
linference 0.9.¢.0.10).¢.0_111.¢.0_12])

26

‘ fof(c_0_0, conjecture, ([X3]:(human(X3)&X3!=john))). ‘ ‘ fof(c_0_1, axiom, (?[X3]:(human(X3)&grade(X3)=a))). ‘ ‘ fof(c_0_2, axiom, (grade(john)=h). ‘ ‘ fof(c_0_3, axiom, (a!=f).

foffe_0_4, negated_conjecture, (~(?[X3]:(human(X3)&X3

hn)))). ‘

fof(c_0_S, negated_conjecture, ({(X4]:(~h i ‘ fof(c_0_6, plain,

\ /

‘ enf(c_0_7, negated_conjecture (X1=johnl~human(X1))). ‘ ‘ cenf(c_0_8, plain (human(esk 1_0))). ‘

. 7

‘ enf(c_0_10, negated_conjecture (esk1_O=john)). ‘ ‘ enf(c_0_9, plain (grade(esk 1 _0)=a)). ‘

cenf(c_0_13, plain ($false)).

| _0)=a))). ‘ enf(c_0_11, plain (grade(john)=1)). ‘

26

Another Example

27

Another Example

(A ring with X* = X is Abelian)

27

RRR| BEO RRRAvBEOM]
O ®¢/0 @[5 ()le ®[. |—0—[¥[o]e|

A VY VYY VYVVYVYVIaVY VY . VvV vV V|
voooo o000 |9000 © 0000
U O R0 © @80 O O ° |

) ()

v9000 - 0000
CR-

us(chm) 1 57,2, sheory (e iey)
[interesting(0.62),obvious: Toompletity(0:13) intensity(0.23), surpris{
).

|

n

n.u-muu esk1_0
zonceSpa, [3¢atus (thm) 1, (57,23, theory (equal L

u.nu-umn 62),0bviousness (§.08) ,complexity(0.75) intensity(0.23) ,surprisi

Learning

» Heuristics learning
» Find formulas that frequently
appear in proofs
» Generalize and reuse
» Axiom selection

» Learn relationship between
conjecture and useful axioms

NORMAL

PERSON SCIENTIST

vvyyy

Image credit: http://xkcd.com/242/

29

http://xkcd.com/242/

30

Unambiguous Inferences

» Complete inference records
» Add inference positions
» Add unifiers (if neccessary, e.g. HO)
> ...

» Complete clausification records

» Clause simplification as rewriting (?)
» Mini-scoping as rewriting (?)
» Step-by-step skolemization

Theoretically managable, but practically difficult
— especially retroactively

31

Proof Expansion

» Calculus level expansion
» Explicit results of each inference
» Good for semantic proof checking
» Good for understanding the structure of the proof
» Potentially good for machine learning

» Primitive inferences

» Convert inferences into primitive operations
» For superposition:

» Instantiation

» Lazy conditional term replacement

» Deleting trivial and duplicated literals

» Uniform proof format for different provers/calculi

» Uniform post-processing (proof checking, proof presentation, ...

32

Proof Structuring and Presentation

» Convert proof by contradiction to forward proof
» (Jasmin Blanchette)

» Find good lemmas to structure proof
» Syntactic features
» Proof graph analysis

» Human-readable (?) proofs

» ldentify main lines of reasoning
» Disentangle proof and provide focus
» (Partially) translate to natural language

33

34

Conclusion

» Efficient proof generation is non-trivial, but possible
» TPTP v3is a useful and used standard for proof representation
» Proof objects are useful for trust building and learning

» Use of proof objects is still in its infancy - we need more tools

35

Conclusion

» Efficient proof generation is non-trivial, but possible
» TPTP v3is a useful and used standard for proof representation
» Proof objects are useful for trust building and learning

» Use of proof objects is still in its infancy - we need more tools

Proof presentation is a big open area

35

Ceterum Censeo. ..

» Bug reports for E should include:
» The exact command line leading to the bug
» Allinput files needed to reproduce the bug
» A description of what seems wrong
» The output of eprover --version

36

	Structure and Representation of Proofs
	Proof Generation
	Proof Applications
	Challenges
	Conclusion

