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Lemmas to Aid Proof Search

Lemmas can make the proof shorter
Lemmas can make selecting the next inference harder
Ideally, we would like to identify just a few relevant lemmas
Similar to premise selection, but we assume no given premise set
1. Generate2. Filter3. Apply
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Lemma Generation via Structure Enumeration

Focus on the structural representation of proofs (tree, DAG etc.)
Enumerate proof structures
Avoid duplicates due to different derivations
Use some proof structure measure to limit the enumeration (tree size, tree height etc.)
Different measures result in very different lemma sets
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Lemma Selection

Use a trained neural model to filter candidate lemmas
Model Interface
• Input: Problem (Conjecture + Axioms), Lemma• Output: Utility score u ∈ [0, 1]

Input Features
• Expert engineered features (e.g. tree size, compacted tree size)• Graph neural network processing formulas and proof terms directly
Utility score
• Inference step reduction when lemma is added• Whether lemma is present in the proof found• . . .
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Lemma Application

Can be added as axioms
• Suitable for any prover, regardless of the calculus• If a full proof is needed, the lemma proofs need to be inserted into the prover’s result
Can have a special treatment
• Lemmas as macros: replace with proof term• Replace inner lemma search/enumeration with accessing input lemmas
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Iterative Improvement

Start from a set of problems
Search from proofs
Learn from proof attempts
Fit a model
Start search again, using the learned model
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Improving other Provers

Lemma generation and selection produces “promising” lemmas
Can be used by any other prover, regardless of the calculus
Cannot be iterated
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Learning from Successful Proof Attempts

Utility measure calculation requires a prover that can produce a proof tree structure
Given a proof, any substructure can be considered as a lemma that we can learn from
Lots of training signal from a single proof
Different proofs of the same problem provide more signal, without (too much) inconsistency
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Learning from Failed Proof Attempts

Any proof attempt constructs a sequence of incomplete proof structures
Most of these have complete substructures
These are proof terms of formulas proven as a byproduct of proof search
We can use any such substructures as a proof to learn from
Similar to Hindsight Experience Replay [Andrychowicz et al., 2017]
• Pretend that we wanted to prove what we accidentally proved
Provides huge amounts of training data from failed proofs
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Condensed Detachment (CD) – Background: Substitution and Detachment

Investigation of axiomatizations of propositional calculiwith substitution and detachment (modus ponens)
Jan Łukasiewicz (1878 Lviv – 1956 Dublin)
For example: Łukasiewicz ⊢ Simp, Peirce, Syll, where
Łukasiewicz = CCCpqrCCrpCsp

∀pqrsP(((p → q) → r) → ((r → p) → (s → p)))
P(i(i(i(x, y), z), i(i(z, x), i(u, x))))

Simp = CpCqp
∀pqP(p → (q → p))
P(i(x, i(y, x)))

Peirce = CCCpqpp
∀pqP(((p → q) → p) → p)
P(i(i(i(x, y), x), x))

Syll = CCpqCCqrCpr
∀pqrP((p → q) → ((q → r) → (p → r)))
P(i(i(x, y), i(i(y, z), i(x, z))))
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Condensed Detachment (CD)

Carew Arthur Meredith (1904 Dublin – 1976 Dublin)
Condensed detachment (mid 1950s)
• Unification• Proof terms (D-terms, full binary trees)

d1 ∶ P(x → y) d2 ∶ P(x′)
D(d1, d2) ∶ P(y)mgu(x, x′)

1 ∶ P(t)fresh-copy for the axiom P(t)

A D-term may have (wrt given axioms) a unique
most general theorem (MGT), the formula proven at its root
• Not all D-terms may have an MGT (unification may fail)• Different D-terms may have subsuming MGTs
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Useful Size Measures for Proof Structures (D-Terms, Full Binary Trees)

Tree size: 8
Height: 4
Compacted size: 5 – size of minimal DAG; number of distinct compound subterms

n 0 1 2 3 4 5 6
Tree size OEIS:A000108 1 1 2 5 14 42 132Height OEIS:A001699 1 1 3 21 651 457,653 210,065,930,571Compacted size OEIS:A254789 1 1 3 15 111 1,119 14,487
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Term representation

D(D(1,D(1, 1)),D(1,D(D(1, 1)),D(D(1, 1), 1)))

Term representation by factor equations

2 = D(1, 1)
3 = D(1, 2)
4 = D(3,D(3,D(2, 1)))



Proof Terms, Formulas and Levels: An Overall Picture

Level : Proof : FormulaT H C F

0 0 0 6 : 1 : CCCpqrCCrpCsp1 1 1 8 : D11 : CCCCpqCrqCqsCtCqs2 2 2 11 : D1D11 : CCCpCqrCCsqCtqCuCCsqCtq3 3 3 11 : D1D1D11 : CCCpCCqrCsrCtCruCvCtCru3 2 2 8 : DD11D11 : CpCCqrCrCqr3 3 3 11 : DD1D111 : CpCCCqrqCsq4 4 4 14 : D1D1D1D11 : CCCpCqCrsCtCCurCvrCwCtCCurCvr4 3 3 8 : D1DD11D11 : CCCCpqCqCpqrCsr4 4 4 11 : D1DD1D111 : CCCCCpqpCrpsCts4 3 3 11 : DD11D1D11 : CpCCqqCCrqCqq4 3 3 11 : DD1D11D11 : CpCCqrCrr4 4 4 11 : DD1D1D111 : CpCCCCqrCsrtCrt4 3 3 8 : DDD11D111 : CCpqCqCpq4 4 4 11 : DDD1D1111 : CCCpqpCrp5 5 5 14 : D1D1D1D1D11 : CCCpCqCCrsCtsCuCvCswCxCuCvCsw5 4 4 12 : D1D1DD11D11 : CCCpqCCrsCsCrsCtCCrsCsCrs5 5 5 12 : D1D1DD1D111 : CCCpqCCCrsrCtrCuCCCrsrCtr5 4 4 11 : D1DD11D1D11 : CCCCppCCqpCpprCsr5 4 4 11 : D1DD1D11D11 : CCCCpqCqqrCsr5 5 5 11 : D1DD1D1D111 : CCCCCCpqCrqsCqstCut5 4 4 8 : D1DDD11D111 : CCCpCqpqCrq5 5 5 11 : D1DDD1D1111 : CCCpqCqrCsCqr5 3 3 8 : DD11DD11D11 : CpCCqrCrCqr5 4 4 11 : DD11DD1D111 : CpCCCqrqCsq
⋮ 17

T Tree size of proof
H Height of proof
C Compacted size of proof
F Max size of MGT of subproof



CD in ATP, Unit Lemmas

CD problems as first-order ATP problems
Detachment axiom P(i(x, y)) ∧ P(x) → P(y)Proper axioms units e.g. P(i(i(i(x, y), z), i(i(z, x), i(u, x))))Goal negative ground unit e.g. ¬P(i(a, i(b, a)))

• Horn, first-order variables, binary function symbol, cyclic predicate dependency• Generalization to arbitrary Horn problems is possible
CD as inference rule can be translated to hyperresolution with the detachment axiom
• The proving method then involves unit lemmas whose proof is a D-term
Many ideas around OTTER were originally developed for CD problems (hints, hot list, resonance strategy)
• JAR 2001 special issue on CD (vol 27, no 2)• Around 200 CD problems in TPTP’s LCL domain, some still very hard
CD was recently modeled with concepts from the connection method [CW and Bibel 2021]
• Proof structure + a global unifying substitution of connected formulas• Allows to propagate a ground goal through unification• Proof search by enumerating proof structures interwoven with unification as in clausal tableaux• Focus on proof structure as a whole, in contrast to an inference rule• Unit lemmas correspond to re-use of subtrees; interplay of D-terms as trees and their minimal DAGs 18
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Learning Requirements, Considered Provers

Lemma generation requires proof structure enumeration (SGCD)
We require provers that emit proofs as D-terms (SGCD, Prover9, CMProver, CCS)
Any prover can be used for evaluation

SGCD Prover9 CMProver leanCoP CCS-Vanilla Vampire E

Goal-driven •/− − • • • ◦ ◦CM-CT ◦ − • • − − −Proof Structure Enumeration • − • ◦ • − −Resolution / Superposition − • − − − • •
Output proof as D-term • • • − • − −
Input lemmas that replace search • − − − • − −

Comprehensive result table (link)
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Learning Unit Lemmas

Any full D-Term, i.e., one whose leaves are axioms represents a unit lemma along with its proof
When a proof is found, its full D-term contains lots of full subtrees, i.e., unit lemmas
A failed proof attempt yields partial D-terms, but they likely still have full subtrees
So far we mostly focused on unit lemmas
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SGCD– Structure Generating Theorem Proving for CD

Assume a Prolog predicate that enumerates proof-MGT pairs for a given level
enum_dterm_mgt_pairs(+Level, ?DTerm, ?Formula)

Level characterizations can be e.g. tree size or height of the D-term
Depending on the parameter instantiation the predicate serves different purposes

+Dterm +Formula verifying a proof
+Dterm −Formula computing the MGT
−Dterm +Formula proving a formula (goal-driven)
−Dterm −Formula generating lemmas (axiom-driven)

Its implementation can access a Cache of solutions in lower levels
SGCD embeds it in nested loops of goal- and axiom-driven phases
The Cache can be heuristically restricted on the basis of MGTs

Cache ∶= ∅;
for l ∶= 0 tomaxLevel do

form ∶= l to l + preAddMaxLevel do
enum_dterm_mgt_pairs(m,d, goal);
throw proof_found(d)

N ∶= {⟨l, d, f ⟩ ∣ enum_dterm_mgt_pairs(l, d, f)};
ifN = ∅ then throw exhausted;
Cache ∶= merge_news_into_cache(N,Cache)
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Some Experimental Results on 312 CD Problems

Performance of different provers over 2 iterations of training a linear model
SGCD Prover9 CMProver CCS-VanillaTime 50s 100s 500s 30m 50s 100s 500s 30m 50s 100s 500s 30m 50s 100s 500s 30m

Base 266 275 285 285 240 252 259 262 82 85 94 103 81 88 99 105Iter 1 280 282 284 281 250 254 262 257 83 93 105 121 96 101 117 130Iter 2 281 283 281 283 247 247 267 265 79 98 95 126 96 97 120 128
Total 282 284 286 286 253 258 269 267 91 105 112 141 106 105 133 145

Number of problems solved without and with additional lemmas using various time limits
Vampire E Prover9 leanCoPTime 50s 100s 500s 30m 50s 100s 500s 30m 50s 100s 500s 30m 50s 100s 500s 30m

Base 221 224 252 263 253 264 275 281 236 244 257 260 70 71 77 77Lemmas 249 257 274 283 256 266 275 275 246 250 261 269 100 103 111 113
Total 249 257 276 284 269 276 287 286 248 252 264 269 100 103 111 113

Detailed Result Table (Link)
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Further Experimental Results on 312 CD Problems

Problems solved by Vampire and SGCD as we alter the number of extracted lemmas (time limit 100s)

Vampire SGCDLemma count 10 25 50 100 200 500 10 25 50 100 200 500
Base 227 227 227 227 227 227 275 275 275 275 275 275Lemmas 226 242 246 258 257 258 278 285 284 281 283 284
Total 231 243 247 258 257 258 282 285 284 283 284 285
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PSP-Level (Proof-SubProof-Level)

Recall that SGCD enumerates and caches structures by “level”, e.g. tree size or height
A principle observed in many steps of a proof by Łukasiewicz and a variation by Meredith[CW and Bibel 2021] can be turned into a further level characterization

Structures in PSP-level n + 1 are the D-terms where
• one argument term is at PSP-level n• and the other argument is a subterm of that term

Enumeration by PSP-level
• is incomplete (some D-terms are omitted)• has features of DAG enumeration (D-terms in PSP-level n have compacted size n)• is suitable for SGCD’s simple caching
Applications of enumeration by PSP-level
• A proof of Łukasiewicz’s problem that is shorter then the original human proofs(and drastically shorter than known ATP proofs)• For many CD problems it leads to proofs with small compacted size• Very useful for input lemma generation for other provers• Key technique to solve a truly hard problem
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Proving LCL073-1

Proven in ATP only by Wos in 2000 with several invocations of OTTER

Proven now with SGCD and replacing lemmas
• 98,198 lemmas generated by SGCD for PSP-level,cache limit 5,000, termination by exhaustion (60 s)• Ordered heuristically according to 5 general features (190 s)• The best 2,900 are supplied as replacing input lemmas to SGCD• SGCD called for proving: axiom-driven by PSP-level,goal-driven by height (preAddMaxLevel=0), cache limit 1,500,general heuristic restrictions (20 s)• The structure of the proof reflects PSP-level plus one height step

Here Wos Meredith
Compacted size 46 74 40Tree size 3,276 9,207 6,172Height 40 48 30Double negation • − •Max size of MGT of subproof 19 18 18
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Beyond Unit Lemmas: Roughly Equivalent Formalisms

D-term with variables
D(1,D(1, x))

D-term with combinatorsObtained from a D-term with variables with standard techniques
λx.D(1,D(1, x)) = D(D(B, 1), 1)(Recall that B def

= λxyz.D(x,D(y, z)))
Horn clauseObtained from the D-term with variables like the MGT, buteach variable becomes a body atom, with the formula substitution of its position applied
Equivalently obtained by resolution from the Detachment clause and the proper axioms
For D(1,D(1, x)) and axiom 1 ∶ P(i(i(x, y), i(i(y, z), i(x, z)))) we obtain
P(i(i(i(x, y), z), i(i(u, y), z))) ← P(i(x, u))

Tree grammars with variables in nonterminals applied to proof structures
Connection structures [Eder 1989] for Horn problems
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The Combinator View Maps the More Powerful Sharing to Shared Subtrees

Recall that B def
= λxyz.D(x,D(y, z)) and λx.D(1,D(1, x)) = D(D(B, 1), 1)

Consider
D(D(D(B, 1), 1),D(D(D(B, 1), 1), 1))

As list of factor equations it is
2 = D(D(B, 1), 1)
3 = D(2,D(2, 1))

It normalizes to the following plain D-term, which has no multiply occurring subterm
D(1,D(1,D(1,D(1,1))))

This is utilized in CCS for proof search
• Enumerated proof terms may involve combinators• Enumeration is by increasing DAG size, to benefit from the compression through the combinators• Can be operated goal-driven, i.e. with goal instantiation like SGCD and CM-CT provers• Refinement: only allow structures built from specified proof structure templates whose semantics is givenby D-terms with combinators (or D-terms with λ-bound variables)• Structure templates can simulate resolution variants, optionally in goal-driven refinements
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On Generating and Applying the More Powerful Lemmas

Possibilities of Applying The Lemmas
Converting to CCS proof structure templates
• Variants of resolution with restrictions (e.g. by clause length)• Optionally goal-driven
Adding as Horn input lemmas
• For CM-CT provers: adding “a bit of resolution”• For resolution/superposition provers: adding specific resolvents

Re-using Proofs to Generate Training Data
Difficulty: Translation of proofs to D-terms, or D-terms with combinators, which represent plain D-terms in astandardized compressed form. This should work for binary resolution proofs of Horn problems

Possibilities of Generating Training Data and Input Lemmas
Note: There is no unique “maximally compressed” structure like the minimal DAG
Enumerating lemmas up to a given size
Selecting from a table of a few thousand lemmas detected previously
Applying grammar-based tree compression: TreeRePair [Lohrey, Maneth, Mennicke 2013]
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More Powerful Lemmas: Estimated Effect in Practice

Much can be done already with just unit lemmas, but there might be some problems where more powerfullemmas are necessary
In our experiments with 312 problems 2 of 296 solved problems could be proven quickly with Vampire and Ebut not with any of the provers that yield D-terms
Moderate success is suggested by experimental data on proof search with CCS for TPTP Horn problems andcompression of given proofs for CD problems
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Conclusion

Lemmas are helpful to find a proof
Generate, filter, apply lemmas
Lemma generation brings a bit of resolution into non-resolution based provers
Blurs the distinction between forward and backward reasoning
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Considered Features

Problem
goal : FormulaTerm
axiom(NatNum) : FormulaTerm
number_of_axioms : NatNum
Proof
problem : problem
source : Term
meta_info : KeyValueList
dcterm : DCTerm
d_csize : NatNum
d_tsize : NatNum
d_height : NatNum
Lemma
problem : problem
lf_proof : proof
lf_is_in_proof : NatNum
formula : lemma(Head,Body)
dcterm : DCTerm
method : Term
lf_d_csize : NatNum
lf_d_tsize : NatNum
lf_d_height : NatNum
lf_d_grd_csize : NatNum
lf_d_major_minor_relation : NatNum

lf_d_number_of_terminals : NatNum
lfp_containing_proof : proof
lfp_d_occs : NatNum
lfp_d_incoming : NatNum
lfp_d_occs_innermost_matches : NatNum
lfp_d_occs_outermost_matches : NatNum
lfp_d_min_goal_dist : NatNum lf_b_length : NatNum
lf_hb_distinct_hb_shared_vars : NatNum
lf_hb_distinct_h_only_vars : NatNum
lf_hb_distinct_b_only_vars : NatNum
lf_hb_singletons : NatNum
lf_hb_double_negation_occs : NatNum
lf_hb_nongoal_symbol_occs : NatNum
lf_h_excluded_goal_subterms : NatNum
lf_h_subterms_not_in_goal : NatNum
lf_hb_compression_ratio_raw_deflate : NormalizedValue
lf_hb_compression_ratio_treerepair : NormalizedValue
lf_hb_compression_ratio_dag : NormalizedValue
lf_hb_organic : NatNum
lf_hb_name : Atom
lf_hb_name_status : NatNum
lf_COMP_csize : NatNum
lf_COMP_tsize : NatNum
lf_COMP_height : NatNum
lf_COMP_distinct_vars : NatNum
lf_COMP_ITEM_occs : NatNum
lf_COMP_occs_of_most_frequent_ITEM : NatNum 37



Considered Utility Values

u_tsize_reduction : NormalizedValue
u_height_reduction : NormalizedValue
u_csize_reduction : NormalizedValue
u_tsize_reduction_subst1 : NormalizedValue
u_height_reduction_subst1 : NormalizedValue
u_csize_reduction_subst1 : NormalizedValue
u_tsize_reduction_subst2 : NormalizedValue
u_height_reduction_subst2 : NormalizedValue
u_csize_reduction_subst2 : NormalizedValue
u_occs : NormalizedValue
u_incoming : NormalizedValue
u_close_to_goal_path : NormalizedValue
u_close_to_axioms_height : NormalizedValue
u_close_to_axioms_tsize : NormalizedValue
u_reproof : Float
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